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Abstract

Nuclear Effects in Neutrino Detection

Although the interactions of neutrinos with elementary particles are described with im-

pressive precision by the Standard Model, neutrino-nucleus reactions remain less well

understood. Improvements in our knowledge of neutrino-nucleus scattering will be an

important requirement for the success of future experimental efforts involving neutrinos

at both low (∼10 MeV) and medium (∼1 GeV) energies.

In the low energy regime, the planned DUNE experiment will attempt to observe

neutrinos from a nearby core-collapse supernova using liquid argon time projection cham-

bers (LArTPCs). Unlike other large neutrino detectors, which are primarily sensitive to

electron antineutrinos, DUNE will observe mostly charged current absorptions of electron

neutrinos on 40Ar in response to a supernova, providing a unique window into the physics

of stellar collapse. Despite the importance of low-energy neutrino-nucleus reactions to

DUNE’s supernova physics goals, prior to the work presented in this thesis, no thorough

consideration of the many possible final states generated by neutrino-argon scattering,

including those involving the emission of nucleons or heavier nuclear fragments, had yet

been attempted in the literature for the energy range of interest for supernova neutrinos.

To aid DUNE’s supernova physics program, this thesis presents a detailed theoretical

model of low-energy neutrino-argon scattering. This model has been implemented within

a new event generator called MARLEY (Model of Argon Reaction Low Energy Yields)

which may be used to simulate realistic 40Ar(𝜈𝑒, 𝑒−)40K∗ events for LArTPC supernova

neutrino sensitivity studies.

At medium energies, large theoretical uncertainties in predictions of neutrino-induced

neutron production present a problem for precision neutrino oscillation experiments, at-

tempts to discover the Diffuse Supernova Neutrino Background, and searches for proton

decay. To constrain the widely-varying predictions of current nuclear models, the Accel-

erator Neutrino Neutron Interaction Experiment (ANNIE) collaboration plans to make

a systematic measurement of neutron production by neutrino interactions in water. Be-
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cause the ANNIE experimental hall is located only 100 m away from the Fermilab Booster

Neutrino Beam target, background neutrons correlated in time with the beam could poten-

tially interfere with this proposed measurement. As a first step toward ANNIE’s ultimate

physics goals, this thesis presents an analysis of background neutron rates as a function

of position within the ANNIE detector. These rates are found to be small enough for the

neutron yield measurements to proceed as planned.
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Chapter 1

Introduction

1.1 Prehistory of neutrino physics

The ideas which led to the birth of neutrino physics first took shape with the discovery

of radioactivity near the turn of the twentieth century. In 1896, prompted by Wilhelm

Röntgen’s discovery of X-rays during the previous year [1, 2], the French physicist Henri

Becquerel performed a series of experiments using photographic film to determine if X-

rays were the result of photoluminescence.1 His choice to use uranium salts as the first

fluorescent materials to be tested would prove fortuitous. In a series of papers presented

to the French Academy of Sciences that year,2 Becquerel reported that

The salts of uranium emit radiations the existence of which had not as yet

been recognised. . . . The radiations of the uranium salts are emitted not only

when the substances are exposed to light, but even when they have been kept in

darkness, and for more than two months the same fragments of various salts

kept secluded from any known exciting radiation have continued to emit new

radiations almost without any appreciable decrease. . . .

All the uranium salts which I have studied, whether phosphorescent to light or

not, and whether crystalline, melted, or dissolved, have given me comparable

results. I have therefore been led to think that the effect was due to the presence
1The absorption and reemission of light, typically with a change of frequency
2See [3] and references therein. Reference [4] provides English translations of several of the original

papers.
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of the element uranium in these salts, and that the metal would give effects

more intense than its compounds.

The experiment made some weeks ago with commercial powder of uranium

which had been kept for a long time in my laboratory confirmed this prevision;

the photographic effect is notably stronger than that produced by one of the

salts of uranium, and by uranium-potassium sulphate. [5, 6]

Soon after Becquerel’s discovery of radioactivity in uranium, Marie Curie and Ger-

hard Carl Schmidt independently noticed similar emissions from thorium. The previously

unknown elements polonium and radium were soon thereafter discovered by Marie Curie

and her husband Pierre, the latter element also in collaboration with Gustave Bémont,

by means of the radiation that they produce. These achievements resulted in Becquerel

and the Curies sharing the 1903 Nobel Prize in Physics.

While the Curies were finding new radioactive materials, a graduate student named

Ernest Rutherford was among the first to try to understand the properties of the radiation

emitted by uranium and thorium. From his early experiments in which he observed the

absorption of this radiation by varying thicknesses of aluminum foil, Rutherford concluded

that

There are present at least two distinct types of radiation—one that is very

readily absorbed, which will be termed for convenience the 𝛼 radiation, and

the other of a more penetrative character, which will be termed the 𝛽 radiation.

[7]

In 1900, Paul Villard reported on his experiments with radium that showed that the more

penetrating radiation could be separated into a component whose path could be altered

by a magnetic field (which retained the name 𝛽 radiation) and a component which showed

no such response. The “undeviable’’ component was given the name 𝛾 radiation within a

few years [8], probably by Rutherford, although the context in which the name was first

used is somewhat unclear [9]. The labels 𝛼, 𝛽, and 𝛾 radiation are still in common use

today, and refer respectively to the emission of helium nuclei, (anti)electrons, and photons

from an atomic nucleus.
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1.2 The trouble with beta decay

While the 𝛼 and 𝛾 radiation were both found to be emitted with discrete energies (indi-

cating that the production mechanism was a simple two-body decay), James Chadwick

reported measurements of 𝛽 radiation in 1914 [10] that revealed a continuous spectrum.

Although currently understood to proceed via the processes

𝑛 → 𝑝 + 𝑒− + ̄𝜈𝑒 (1.1)

𝑝 → 𝑛 + 𝑒+ + 𝜈𝑒, (1.2)

beta decays appeared to Chadwick and his contemporaries to involve the emission of

only a single particle (an electron or positron) from a nucleus. This result had troubling

implications that were debated over the next two decades.3 One possible explanation,

championed by Lise Meitner and others [13], was that beta particles are indeed emitted

with discrete energies, but they lose varying amounts of energy as they undergo final-

state interactions while leaving the nucleus. In 1927, however, calorimetric measurements

by Ellis and Wooster [14] of the average energy released per 𝛽 decay of “radium E’’

(known today as 210Bi) yielded a value consistent with the mean of the continuous 𝛽

particle spectrum. This contradicted the final-state energy loss model, under which one

would expect the average energy release to be greater than or equal to the endpoint of

the 𝛽 spectrum. Meitner and Orthmann [15] confirmed these results with an improved

experiment in 1930, leading the former to write in a letter to Ellis,

We have verified your results completely. It seems to be now that there can

be absolutely no doubt that you were completely correct in assuming that beta

radiations are primarily inhomogeneous. But I do not understand the result

at all. [12]

With the possibility of secondary interactions eliminated, only more outlandish expla-

nations of the continuous 𝛽 spectrum remained. Neils Bohr was willing to suggest that

conservation of energy must be reinterpreted as a statistical law, so that 𝛽 decays need
3For detailed historical reviews of the early struggles to understand 𝛽 decay, see references [11, 12].
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only conserve energy on average. At a lecture delivered to the Royal Society of Chemistry

on May 8, 1930, Bohr claimed that

At the present stage of atomic theory we have no argument, either empirical

or theoretical, for upholding the energy principle in the case of 𝛽-ray disinte-

grations, and are even led to complications and difficulties in trying to do so.

. . . In atomic theory, notwithstanding all the recent progress, we must still be

prepared for new surprises. [16]

One of Bohr’s predicted “new surprises’’ came on December 4, 1930, when Wolfgang

Pauli wrote an open letter4 to a conference of physicists in Tübingen, Germany. In the

letter, he proposed a “desperate remedy’’ to the 𝛽 spectrum problem: the existence of a

new electrically neutral particle called the “neutron’’:

The continuous 𝛽-spectrum would then become understandable by the assump-

tion that in 𝛽 decay a neutron is emitted together with the electron, in such a

way that the sum of the energies of the neutron and electron is constant. . . .

I admit that my remedy may appear to have a small a priori probability . . .

However, only those who wager can win, and [given] the seriousness of the

situation of the continuous 𝛽-spectrum . . . one should earnestly discuss every

way of salvation.—So, dear radioactives, put it to the test and set it right.

[13, 17]

With the discovery of the modern neutron in early 1932 by James Chadwick [18, 19],

Pauli’s proposed neutral particle, which would need to be far lighter than Chadwick’s in

order for it to have avoided detection up to that point, was in need of a new name. Af-

ter hearing of Pauli’s proposed “light neutron’’ during a conversation with Enrico Fermi,

Edoardo Amaldi jokingly dubbed it the neutrino, a name which he would later note5

was, “a funny and grammatically incorrect contraction of ‘little neutron’ in Italian: neu-
4The full text of the letter is reprinted in the original German in reference [17]. An English translation

is given in reference [13].
5See footnote 277 of reference [20].
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tronino.’’ The name stuck, and it was quickly adopted by both Fermi and Pauli himself

[20].

1.3 Discovery of the three neutrino flavors

While Pauli’s proposed solution to the 𝛽 decay problem was little more than a guess

at the time that he wrote his famous letter, the idea was soon made more scientifically

rigorous by Enrico Fermi, who published a highly successful theory of 𝛽 decay [21, 22]

in 1934. Fermi’s theory, which featured the neutrino as an indispensable component,

was soon used by Gian Carlo Wick [23] and Hideki Yukawa and Shoichi Sakata [24] to

predict the existence of electron capture, a nuclear process related to 𝛽 decay in which

an atomic electron is absorbed by a proton and an electron neutrino is emitted. Nuclear

recoil energy spectra observed in electron capture experiments by James Allen [25] and

Raymond Davis [26] were found to be consistent with the hypothesis of single neutrino

emission and provided the earliest experimental evidence (other than the continuous 𝛽

decay spectrum itself) for the existence of neutrinos.

Despite an earlier detection attempt by Horace Richard Crane6 [27] in 1939, the first

direct evidence for the existence of neutrinos would emerge in 1953 when Frederick Reines

and Clyde Cowan published [28] preliminary results of an antineutrino detection experi-

ment performed at the Hanford Site, a plutonium production facility established during

the Manhattan project. They confirmed their discovery using a second experiment at

the Atomic Energy Commission’s Savannah River Site in 1956 [29, 30]. In both of the

experiments, a nuclear reactor was used as a source of antineutrinos, which were detected

via the inverse 𝛽 decay reaction

̄𝜈𝑒 + 𝑝 → 𝑛 + 𝑒+ (1.3)

using a cadmium-loaded liquid scintillator target. Reines was awarded the 1995 Nobel

Prize in Physics for this work.

The discovery of the muon [31] in 1937 paved the way toward the realization that there
6Crane studied the reaction ̄𝜈𝑒 + 37Cl → 35S + 𝑒+ but did not come close to achieving the needed

sensitivity.

5



are multiple kinds of neutrinos, now referred to as flavors. Early experiments [32] with

muons showed that they decay into an electron, a neutrino, and an antineutrino. However,

since muon decay to an electron and a photon was not observed [33], it was thought that

the two neutrinos were distinct, with one corresponding to the type produced in nuclear

beta decay (now known as the electron neutrino) and the second being referred to at the

time as the “neutretto’’ (now known as the muon neutrino) [34]. These expectations were

confirmed years later during the first neutrino beam experiment performed by Danby

et al. [35] in 1962, which was an implementation of an idea originally devised by Bruno

Pontecorvo [36] and Melvin Schwartz [37] independently of each other. High-energy muon

neutrinos created by pion decays were observed to produce only muons (as opposed to the

electrons produced by 𝜈𝑒) via charged current interactions in a spark chamber detector,

demonstrating the difference between the neutrino flavors. For this achievement, the

leaders of the experiment, Leon Lederman, Melvin Schwartz, and Jack Steinberger, were

awarded the 1988 Nobel Prize in Physics.

In light of the discovery of the muon neutrino during the previous decade, when the tau

lepton was discovered by Perl et al. [38] in 1975, a corresponding neutrino was expected to

exist. However, due to the experimental challenges involved, a direct observation of this

particle would not be achieved until the year 2000, when the DONUT (Direct Observation

of the Nu Tau) collaboration reported the observation of 4 tau neutrino interaction events

in a nuclear emulsion detector [39]. This detection confirmed the results of four earlier

experiments (ALEPH [40], DELPHI [41], L3 [42], and OPAL [43]) at the Large Electron-

Positron Collider (LEP) at CERN,7 which all indirectly pointed to the existence of three

active8 neutrino flavors with masses lighter than half the 𝑍 boson mass.

1.4 Neutrino interactions

Our modern understanding of neutrino interactions (and weak processes in general) orig-

inated in theoretical work performed in the late 1950s and 1960s by Sheldon Glashow
7European Organization for Nuclear Research
8Active neutrinos are those that undergo weak interactions. In addition to the three active neutrino

flavors that are currently known, there may exist one or more sterile neutrino species which do not
participate in the weak interaction.
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[44, 45], Abdus Salam (together with John Clive Ward) [46, 47], and Steven Weinberg

[48]. The Glashow-Weinberg-Salam (GWS) model, for which the authors were awarded

the 1979 Nobel Prize in Physics, provides a unified treatment of the electromagnetic and

weak interactions and resolves a number of problems with previous refinements to Fermi’s

1934 theory (such as a lack of renormalizability).

Under the GWS theory, the Lagrangian governing the electromagnetic and weak in-

teractions is invariant under symmetry transformations of the local gauge group 𝑆𝑈(2) ⊗

𝑈(1). Three massless gauge bosons (𝑊1, 𝑊2, and 𝑊3) are associated with the generators

of 𝑆𝑈(2) (Pauli matrices whose eigenvalues are the three components of weak isospin),

while a single massless gauge boson, 𝐵, is associated with weak hypercharge, the generator

of 𝑈(1). Via the Higgs mechanism,9 the 𝑆𝑈(2)⊗𝑈(1) symmetry is spontaneously broken,

leaving only the 𝑈(1) phase symmetry of electromagnetism. The four gauge bosons of

the theory couple to the Higgs field, which acquires a nonzero vacuum expectation value.

As a result, one of the linear combinations of 𝑊3 and 𝐵, the 𝑍 boson field

𝑍0 = −𝐵 sin 𝜃𝑊 + 𝑊3 cos 𝜃𝑊 (1.4)

gains a nonzero mass, while the other, the photon,

𝛾 = 𝐵 cos 𝜃𝑊 + 𝑊3 sin 𝜃𝑊 (1.5)

remains massless. The other two gauge bosons likewise combine to form the massive 𝑊 ±

bosons10 via

𝑊 ± = 1√
2

(𝑊1 ∓ 𝑖𝑊2) . (1.6)

The electromagnetic and weak processes observed in experiments are mediated by the

exchange of the photon and the three massive bosons (𝑍0, 𝑊 ±), respectively [49]. The

weak mixing angle 𝜃𝑊 is given in terms of the 𝑊 and 𝑍 boson masses by

cos 𝜃𝑊 = 𝑚𝑊
𝑚𝑍

. (1.7)

9For a review of the Higgs mechanism, see any recent textbook on the Standard Model, e.g., reference
[49].

10Note that 𝑊 + is the antiparticle of 𝑊 −.
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Figure 1.1: Feynman diagrams showing examples of the two general categories of
neutrino interactions. LEFT: A muon neutrino undergoes a charged current interaction
with a down quark, producing a muon and an up quark in the final state. RIGHT: A

tau antineutrino elastically scatters off an electron in a neutral current interaction.

Because neutrinos interact only via the weak force and gravity, the latter of which

is negligible in typical experimental situations, one may quite generally classify reactions

involving them into two categories. In the first of these, a neutral current (NC) interaction,

a neutrino exchanges a 𝑍0 boson with another particle, recoils, and emerges with its flavor

unchanged. In the second, a charged current (CC) interaction, a neutrino exchanges a

𝑊 boson (either 𝑊 + or 𝑊 −) with another particle and is transformed into the charged

lepton of the same flavor (e.g., 𝜈𝑒 becomes 𝑒−). Section 1.4 illustrates examples of each

of these two processes using Feynman diagrams.

The GWS theory forms a key part of the Standard Model of particle physics and has

been validated by numerous experimental results, including the discovery of neutral cur-

rent neutrino scattering on hadrons [50] and electrons [51] by the Gargamelle experiment

in the 1970s, the direct detection of the 𝑊 [52, 53] and 𝑍 [54, 55] bosons by the UA1

and UA2 experiments in 1983, and the discovery of the Higgs boson (and thus the Higgs

field) in 2012 by the ATLAS [56] and CMS [57] experiments at the Large Hadron Collider

(LHC). Additional tests of the model, with impressive experimental precision, continue

to be made by LHC experiments (see reference [58] for a recent review).

Further discussion of the theory of neutrino interactions, including the Lagrangians

describing CC and NC processes and a derivation of low-energy neutrino scattering cross

sections, will be given in chapter 3.
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1.5 Neutrino oscillations

In the Standard Model, neutrinos are assumed to be massless, and lepton flavor is con-

served.11 Around the turn of the last century, the discovery of neutrino oscillations, a

phenomenon in which a neutrino produced with a definite flavor can later be measured to

have a different flavor, demonstrated both of these assumptions to be false. This discovery

provided some of the first evidence of inadequacies in the Standard Model and has opened

up an entirely new area of particle physics research.

To see why neutrino oscillations occur, it is sufficient to note that a neutrino in a state

of definite flavor |𝜈ℓ⟩ (for ℓ ∈ {𝑒, 𝜇, 𝜏}) corresponds to a superposition of states ∣𝜈𝑗⟩ with

definite mass, and the two eigenbases are connected via the relation

|𝜈ℓ⟩ = ∑
𝑗

𝑈ℓ𝑗 ∣𝜈𝑗⟩ (1.8)

where the 𝑈ℓ𝑗 are elements of a unitary matrix called the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix. For freely-propagating neutrinos in vacuum, the states ∣𝜈𝑗⟩ are

eigenstates of the Hamiltonian with total energy12

𝐸𝑗 = √|𝐩|2 + 𝑚2
𝑗 (1.9)

where 𝐩 is the neutrino 3-momentum and 𝑚𝑗 is the mass of the 𝑗th mass eigenstate.

According to the Schrödinger equation, the time evolution of the mass states may be

described using the plane wave expression

∣𝜈𝑗(𝑡)⟩ = 𝑒−𝑖 𝐸𝑗 𝑡 ∣𝜈𝑗⟩ (1.10)

where ∣𝜈𝑗⟩ is the 𝑗th mass state at time 𝑡 = 0. Using the unitarity of the PMNS matrix,

it can be shown [59] that the flavor state |𝜈𝛼(𝑡)⟩ at time 𝑡 can be expressed in terms of

the flavor states ∣𝜈𝛽⟩ as

|𝜈𝛼(𝑡)⟩ = ∑
𝛽

(∑
𝑗

𝑈𝛼𝑗𝑒−𝑖𝐸𝑗𝑡𝑈 ∗
𝛽𝑗) ∣𝜈𝛽⟩ . (1.11)

11That is, the number of leptons minus the number of antileptons of each flavor (electron, muon, and
tau) must be the same before and after a reaction.

12Unless otherwise noted, natural units (with ℏ = 𝑐 = 1) are used throughout this thesis.
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The probability 𝑃𝜈𝛼→𝜈𝛽
that a neutrino in a pure flavor state |𝜈𝛼⟩ at time 𝑡 = 0 would be

observed to have flavor 𝛽 at time 𝑡 is therefore given by

𝑃𝜈𝛼→𝜈𝛽
= ∣⟨𝜈𝛽∣𝜈𝛼(𝑡)⟩∣2 = ∑

𝑗,𝑘
𝑈𝛼𝑘 𝑈 ∗

𝛽𝑘𝑈 ∗
𝛼𝑗𝑈𝛽𝑗𝑒−𝑖 (𝐸𝑘−𝐸𝑗) 𝑡 (1.12)

Since neutrinos have tiny masses and travel at speeds close to the speed of light, the

factors in the exponential are usually approximated by

𝐸𝑘 − 𝐸𝑗 ≈
Δ𝑚2

𝑘𝑗

2𝐸
(1.13)

𝑡 ≈ 𝐿 (1.14)

where (in natural units) 𝐸 ≈ |𝐩| is the neutrino energy,13 𝐿 is the distance traveled by

the neutrino in time 𝑡, and

Δ𝑚2
𝑘𝑗 ≡ 𝑚2

𝑘 − 𝑚2
𝑗 (1.15)

is the difference of the squared masses of the mass eigenstates |𝜈𝑘⟩ and ∣𝜈𝑗⟩. These

approximations lead to the standard expression for the oscillation probability

𝑃𝜈𝛼→𝜈𝛽
(𝐿, 𝐸) = ∑

𝑗,𝑘
𝑈𝛼𝑘 𝑈 ∗

𝛽𝑘𝑈 ∗
𝛼𝑗𝑈𝛽𝑗 exp (−𝑖

Δ𝑚2
𝑘𝑗 𝐿

2𝐸
) . (1.16)

Neutrino oscillations were first anticipated theoretically in the late 1950s and 1960s

in a series of papers by Bruno Pontecorvo [60, 61]; Ziro Maki, Masami Nakagawa, and

Shoichi Sakata [62]; and Vladimir Gribov and Bruno Pontecorvo [63]. Although it was

not correctly understood by the physics community for many years, the first experimental

evidence for neutrino oscillations was obtained by the Homestake solar neutrino exper-

iment [64, 65] led by Raymond Davis. The Homestake neutrino detector consisted of a

100 000 gallon tank of perchloroethylene, a liquid often used to dry clean clothing, which

was installed underground in a gold mine near Lead, South Dakota. Electron neutrinos

produced by fusion processes in the Sun were detected via the charged current reaction

𝜈𝑒 + 37Cl → 37Ar + 𝑒−, (1.17)
13The momentum 𝐩 is the same for all of the flavor states.
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which produced radioactive 37Ar argon atoms in the tank. These atoms were chemi-

cally extracted every few months and counted to determine the reaction rate and the

corresponding solar neutrino flux. Over several decades, the Homestake experiment con-

sistently reported a 𝜈𝑒 flux from the Sun that was about one third of the value predicted

by standard solar models, including calculations by Davis’s collaborator John Bahcall

[66]. This solar neutrino problem was confirmed when similar deficits were seen by other

solar neutrino experiments, including Kamiokande [67] SAGE [68], and GALLEX [69, 70].

A second set of anomalies that hinted at the existence of neutrino oscillations were

measurements of atmospheric neutrinos by IMB [71] and Kamiokande [72, 73], both of

which found an unexpectedly low value of the ratio of atmospheric 𝜈𝜇 to 𝜈𝑒 events. Re-

views of this atmospheric neutrino problem written by participants in the related analyses

may be found in references [74, 75].

Compelling evidence that both of these problems could be explained by neutrino os-

cillations came from the Super-Kamiokande (Super-K) and SNO experiments. In 1998,

the Super-Kamiokande collaboration published an analysis in which they found a direc-

tional asymmetry in the number of detected atmospheric muon neutrino events, with

more events being observed for neutrinos traveling downward when compared with those

traveling upward through the detector [76]. The asymmetry could readily be explained

by 𝜈𝜇 → 𝜈𝜏 oscillations: since the upward-going muon neutrinos had to travel through

the earth to reach the detector, more time was available for them to oscillate into tau

neutrinos, which were not detectable by Super-Kamiokande.

In 2002, the SNO collaboration reported a measurement of the relative rates of the

charged current reaction

𝜈𝑒 + 2H → 𝑝 + 𝑝 + 𝑒− (1.18)

and the neutral current reaction

𝜈𝑥 + 2H → 𝑝 + 𝑛 + 𝜈𝑥 𝑥 ∈ {𝑒, 𝜇, 𝜏} (1.19)

induced by solar neutrinos within their heavy-water-based detector [77]. Because only

the 𝜈𝑒 component of the flux could participate in the CC reaction, while all neutrino
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flavors participated in the NC reaction, a simultaneous measurement of the two reaction

rates allowed a determination of the total solar neutrino flux and the 𝜈𝑒 fraction. Under

the assumption that neutrino oscillations were taking place, SNO’s results were shown

to be consistent with standard solar models, providing an elegant solution to the solar

neutrino problem. The achievements of the Super-Kamiokande and SNO collaborations

in establishing the existence of neutrino oscillations were recognized when leaders from

the two experiments, Takaaki Kajita and Arthur McDonald, were awarded the 2015 Nobel

Prize in Physics.

In the years since these pioneering measurements, a wealth of new data on neutrino

oscillations has been obtained in a worldwide experimental effort. To date, nearly all

oscillation measurements can be described using a 3-flavor model of neutrino mixing,

in which the PMNS matrix from eq. (1.8) is parameterized in terms of three mixing

angles (𝜃12, 𝜃13, and 𝜃23) and a charge-parity (CP) symmetry violating phase 𝛿𝐶𝑃, which

generates differences in the oscillation probabilities for neutrinos and antineutrinos. Under

the 3-flavor model, the PMNS matrix may be written in the form [78]

𝑈ℓ𝑗 =

𝑗=1 𝑗=2 𝑗=3

⎛⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟
⎠

𝑐12 𝑐13 𝑠12 𝑐13 𝑠13 𝑒−𝑖 𝛿𝐶𝑃 ℓ=𝑒

−𝑠12 𝑐23 − 𝑐12 𝑠23 𝑠13 𝑒𝑖 𝛿𝐶𝑃 𝑐12 𝑐23 − 𝑠12 𝑠23 𝑠13 𝑒𝑖 𝛿𝐶𝑃 𝑠23 𝑐13 ℓ=𝜇

𝑠12 𝑠23 − 𝑐12 𝑐23 𝑠13 𝑒𝑖𝛿𝐶𝑃 −𝑐12 𝑠23 − 𝑠12 𝑐23 𝑠13 𝑒𝑖 𝛿𝐶𝑃 𝑐23 𝑐13 ℓ=𝜏

(1.20)

where 𝑠𝑖𝑗 ≡ sin 𝜃𝑖𝑗 and 𝑐𝑖𝑗 ≡ cos 𝜃𝑖𝑗. Table 1.1 gives recently obtained best-fit values for

the three mixing angles 𝜃𝑗𝑘, the CP violating phase 𝛿𝐶𝑃, and two of the three squared mass

differences14 Δ𝑚2
𝑗𝑘 needed to compute oscillation probabilites using the 3-flavor model.15

If neutrinos are Majorana fermions (see section 1.6), then two additional CP-violating

phases are needed to write down the PMNS matrix. However, factors containing the

Majorana phases cancel out in the expressions for oscillation probabilities (see eq. (1.16)),

so they are not observable in neutrino oscillation experiments.
14Note that Δ𝑚2

23 may be obtained from the other two squared mass differences via Δ𝑚2
23 = Δ𝑚2

21−
Δ𝑚2

31.
15See eq. (1.16).
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Table 1.1: Results of a 2018 global fit of the 3-flavor model neutrino oscillation
parameters [79]. Where applicable, best-fit values are given assuming a normal neutrino

mass hierarchy (𝑚3 > 𝑚2) or an inverted hierarchy (𝑚3 < 𝑚2).

Parameter
Δ𝑚2

21

(10−5 eV2)
|Δ𝑚2

31|
(10−3 eV2)

𝜃12

(°)
𝜃23

(°)
𝜃13

(°)
𝛿𝐶𝑃

(°)

Best fit
±1𝜎

Normal hierarchy
7.55+0.20

−0.16

2.50 ± 0.03
34.5+1.2

−1.0

47.7+1.2
−1.7 8.45+0.16

−0.14 218+38
−27

Inverted hierarchy 2.42+0.03
−0.04 47.9+1.0

−1.7 8.53+0.14
−0.15 281+23

−27

It is currently unknown whether the third neutrino mass, 𝑚3, is larger or smaller than

the second 𝑚2, although the latest experimental results favor the former at the 3𝜎 level

[79]. In the literature, the 𝑚3 > 𝑚2 hypothesis is commonly referred to as the normal

hierarchy (or normal ordering) of the neutrino masses, while 𝑚3 < 𝑚2 is referred to as

the inverted hierarchy. Determining the correct neutrino mass hierarchy and obtaining a

precise measurement of 𝛿𝐶𝑃 (which is poorly constrained at present) are primary goals of

current and future neutrino oscillation experiments.

While the 3-flavor model has been highly successful in describing the majority of exist-

ing neutrino oscillation measurements, there exist several experimental anomalies whose

disagreements with the 3-flavor model have not yet been satisfactorily explained. Exam-

ples of these anomalies16 include an excess of low-energy events seen in the LSND and

MiniBooNE neutrino beam experiments [81] and a deficit in the ̄𝜈𝑒 fluxes measured by re-

actor neutrino experiments [82, 83]. Current experimental efforts to address these anoma-

lies include the Short-Baseline Neutrino Program at Fermilab [84] and the PROSPECT

experiment [85] at Oak Ridge National Laboratory. If confirmed, the anomalies may sig-

nal the existence of a fourth sterile neutrino flavor which does not participate in weak

interactions.

1.6 Neutrino masses

While neutrino oscillation data provide compelling evidence that neutrinos have nonzero

masses, the absolute scale of their masses remains unknown. Currently, the most stringent
16Reference [80] provides a detailed review of anomalies in the neutrino oscillation literature.
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model-independent constraints on the neutrino mass scale are provided by measurements

of the effective electron antineutrino mass

𝑚2
̄𝜈𝑒

≡ ∑
𝑗

∣𝑈𝑒𝑗∣
2 𝑚2

𝑗 (1.21)

obtained using the electron energy spectrum near the endpoint of tritium beta decay

3H → 3He + 𝑒− + ̄𝜈𝑒. (1.22)

In 2011, data from the Troitsk experiment were reanalyzed to obtain the upper bound

[86]

𝑚 ̄𝜈𝑒
< 2.05 eV. (1.23)

Future measurements of tritium beta decay by the KATRIN [87] and Project 8 [88] experi-

ments aim to improve this limit by one (KATRIN) or two (Project 8) orders of magnitude.

At present, strict constraints on the sum of the neutrino masses are available from

cosmological observations, e.g., the Planck Collaboration’s upper limit of [89]

∑
𝑘

𝑚𝑘 < 0.170 eV, (1.24)

but certain model assumptions must be made to interpret the data in this way [78].

1.6.1 Dirac masses

Because the neutrino masses are nonzero and yet much smaller than those of all of the

other fermions, there is considerable theoretical interest in identifying the mechanism by

which neutrino masses are generated. The possible generation mechanisms depend on

whether neutrinos are Dirac or Majorana fermions.

If neutrinos are Dirac fermions, i.e., if the chiral projections 𝜈𝑘,𝐿 and 𝜈𝑘,𝑅 of the 𝑘th

neutrino field 𝜈𝑘, defined by

𝜈𝑘,𝐿 ≡ 1
2

(1 − 𝛾5)𝜈𝑘 𝜈𝑘,𝑅 ≡ 1
2

(1 + 𝛾5)𝜈𝑘, (1.25)

are independent of each other, then it is possible that neutrinos obtain their masses via the

Higgs mechanism in the same way as all other massive fermions in the Standard Model.
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For three neutrino species, this possiblity would be represented by adding the terms

ℒ𝜈,ℎ = −
3

∑
𝑘=1

𝑦𝑘√
2

̄𝜈𝑘 𝜈𝑘(𝑣 + 𝐻) = −
3

∑
𝑘=1

𝑚𝑘 ̄𝜈𝑘 𝜈𝑘 −
3

∑
𝑘=1

̄𝜈𝑘 𝜈𝑘 𝐻 (1.26)

to the Standard Model Lagrangian [59]. Here 𝐻 is the physical Higgs field, 𝜈𝑘 = 𝜈𝑘,𝐿+𝜈𝑘,𝑅

is the 𝑘th neutrino field (in the mass basis), the first sum on the right-hand side includes

the neutrino mass terms, and the second sum represents the interactions between the

Higgs field and each of the neutrino fields. The mass of the 𝑘th neutrino 𝑚𝑘 may be

written in terms of the Higgs vacuum expectation value 𝑣 and a dimensionless coupling

constant 𝑦𝑘:

𝑚𝑘 = 𝑦𝑘𝑣√
2

. (1.27)

Although the generation of the Dirac masses described above requires only a minimal

extension of the Standard Model (the addition of right-handed components of the neutrino

fields 𝜈𝑘,𝑅 and a nonzero coupling between neutrinos and the Higgs field), it might be

considered theoretically unsatisfying due to the large difference between the neutrino mass

scale (order 1 eV at most) and the Higgs vaccum expectation value 𝑣 ≈ 246 GeV. Since

the Dirac neutrino masses are proportional to 𝑣, this implies that the coupling constants 𝑦𝑘

must be extremely small, e.g., for a neutrino with a mass of 1 eV, 𝑦𝑘 ≈ 5.7 × 10−12, while

the next lightest fermion, the electron, has 𝑦𝑘 ≈ 2.9 × 10−6. The lack of an explanation

for the remarkable smallness of the neutrino masses might therefore be seen as a defect

of the theory, even while recognizing that all of the couplings between the fundamental

fermions and the Higgs field are free parameters in the Standard Model that must be

determined empirically.

1.6.2 Majorana masses

For Majorana neutrinos, the chiral projections 𝜈𝑘,𝐿 and 𝜈𝑘,𝑅 of the field 𝜈𝑘 are not inde-

pendent. Instead, the right-handed projection may be written in terms of the left-handed

one via the relation

𝜈𝑘,𝑅 = 𝜈𝐶
𝑘,𝐿 ≡ C 𝜈𝑘,𝐿

𝑇 = C (𝜈†
𝑘,𝐿𝛾0)

𝑇
(1.28)
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where C is the charge conjugation matrix. Like all Majorana fermion fields, the Majorana

neutrino field

𝜈𝑘 = 𝜈𝑘,𝐿 + 𝜈𝑘,𝑅 = 𝜈𝑘,𝐿 + 𝜈𝐶
𝑘,𝐿 (1.29)

has the important property

𝜈𝐶
𝑘 = (𝜈𝑘,𝐿 + 𝜈𝐶

𝑘,𝐿)𝐶 = 𝜈𝐶
𝑘,𝐿 + 𝜈𝑘,𝐿 = 𝜈𝑘, (1.30)

i.e., Majorana neutrinos are their own antiparticles. Although more exotic possibilities

exist, the simplest Majorana mass term that can be constructed using the Standard

Model fields and symmetries is [59] (restricting ourselves to a single neutrino species 𝜈𝑘

for simplicity)

ℒMajorana mass = 1
2

𝑚𝑘 (𝜈𝑇
𝑘,𝐿 C† 𝜈𝑘,𝐿 + 𝜈†

𝑘,𝐿 C 𝜈∗
𝑘,𝐿) . (1.31)

The Majorana neutrino mass 𝑚𝑘 is given by

𝑚𝑘 = 𝑔 𝑣2

𝑀
, (1.32)

where 𝑔 is a dimensionless coupling constant, and 𝑀 is a large mass characteristic of some

high-energy unified theory.

Since it is assumed that 𝑀 ≫ 𝑣, the presence of 𝑀 in eq. (1.32) may be readily

invoked to explain the smallness of the neutrino masses, thus eliminating one of the

main theoretical objections to the Dirac mass mechanism considered above. However,

the product of fields which generates the Majorana mass term given in eq. (1.31) is

not renormalizable, necessitating an appeal to a currently unknown high-energy theory

(which will solve the renormalizability problem) to justify the addition of such a term to

the Standard Model.

An interesting feature of the Majorana mass term in eq. (1.32) is that it violates

lepton number symmetry. While most lepton number violating processes that would

enabled by the Majorana mass term would be far too rare to be detected in the foreseeable

future,17 an important exception is neutrinoless double beta (0𝜈𝛽𝛽) decay, a hypothesized
17See, e.g., reference [90] for a discussion of Majorana neutrinos undergoing neutrino-antineutrino

oscillations.
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Figure 1.2: Neutrinoless double beta decay generated via the exchange of a virtual
Majorana neutrino between two decaying nucleons. Figure from reference [93].

nuclear process in which two neutrons are transformed into two protons and two electrons

without the emission of any neutrinos. While a number of different mechanisms could be

responsible for 0𝜈𝛽𝛽 decay, the most straightforward option is the exchange of a virtual

Majorana neutrino between two decaying nucleons, as shown in fig. 1.2. Regardless of the

underlying cause of the decay, in the absence of pathological fine-tuning, the observation

of 0𝜈𝛽𝛽 decay would imply that at least one neutrino species has a Majorana mass term

[91]. Because this conclusion remains valid even in the presence of arbitrary new physics

processes that contribute to 0𝜈𝛽𝛽 decay, it is sometimes referred to in the literature as

the “black box theorem’’ [92].

Many current and proposed experiments are attempting to discover neutrinoless dou-

ble beta decay, including GERDA [94], Majorana [95], SNO+ [96], KamLAND-Zen

[97], and EXO-200 [98], among others. While no credible observation of 0𝜈𝛽𝛽 has yet

been made, limits have been set on the half-life of 0𝜈𝛽𝛽 decay, and significant effort is

being invested in improving the sensitivity of the relevant detector technologies for next-

generation searches. Recent reviews of the 0𝜈𝛽𝛽 decay literature include references [93,

99, 100].

Although the discussion above has considered Dirac and Majorana mass terms for

neutrinos as distinct possiblities, they are by no means mutually exclusive. In the most
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general case, each neutrino species 𝜈𝑘 could have an overall mass term ℒmass,𝑘 of the form

[59]

ℒmass,𝑘 = ℒ𝐷
mass,𝑘 + ℒ𝐿

mass,𝑘 + ℒ𝑅
mass,𝑘 (1.33)

where ℒ𝐷
mass,𝑘 is a Dirac mass term, and ℒ𝐿

mass,𝑘 (ℒ𝑅
mass,𝑘) are Majorana mass terms for

the left-handed (right-handed) chiral projections of the 𝜈𝑘 field.

1.7 Neutrino detection techniques

Since the first experimental observation of reactor antineutrinos by Reines and Cowan

[30], a variety of neutrino detectors have been developed using targets made of water, ice,

iron, lead, argon, sodium iodide, and plastic and liquid scintillator, among other materials.

Currently existing large (kiloton-scale) neutrino experiments typically use either water or

liquid scintillator as the target material, while the planned Deep Underground Neutrino

Experiment (DUNE) will use 40 kt of liquid argon as a target. These three detector

technologies are briefly reviewed in the following sections.

1.7.1 Water Cherenkov detectors

Among the largest neutrino detectors constructed to date are water Cherenkov detectors

like Super-Kamiokande [101], which consist of a tank of purified water instrumented

with photodetectors. Neutrino interactions within the water tank lead to the creation

of charged particles. By means of a process called the Cherenkov effect, these charged

particles produce light which may be used to reconstruct the neutrino interaction.

The Cherenkov effect was discovered experimentally by Pavel Cherenkov [102] in 1934

and explained theoretically by Igor Tamm and Ilya Frank [103] in 1937. These achieve-

ments led to the three scientists being awarded the Nobel Prize in Physics in 1958.

1.7.1.1 Cherenkov radiation

The Cherenkov effect is a phenomenon in which a fast-moving charged particle induces the

emission of light by a surrounding dielectric medium. In response to the electric field of

the particle, the material in its vicinity becomes temporarily polarized. After the charged

particle passes, the molecules of the material reequilibrate by emitting electromagnetic
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radiation. When the speed of the charged particle is less than the phase velocity of light

in the material, the distribution of the induced dipoles is symmetrical around the particle

track, and there is no net radiation in the far field. However, when the particle speed 𝛽

exceeds the phase velocity of light in the material, i.e., when

𝛽 > 1
𝑛

(1.34)

where 𝑛 is the material’s index of refraction, the polarized region of the material acquires

a nonzero dipole moment and the electromagnetic radiation emitted from the induced

dipoles interferes constructively at an angle 𝜃 with respect to the direction of the particle

motion. The Cherenkov radiation emission angle 𝜃 obeys the relation

cos 𝜃 = 1
𝑛 𝛽

(1.35)

for 𝛽 ≥ 1/𝑛. The emitted light forms a cone around the direction of the charged particle

with half opening angle 𝜃 (see fig. 1.4). The spectrum of Cherenkov radiation may be

expressed in terms of the energy radiated 𝑑𝐸 per unit length traveled by the particle 𝑑𝑥

per unit of angular frequency 𝑑𝜔 via the Frank-Tamm formula [104] (in Gaussian units)

𝑑2𝐸
𝑑𝑥 𝑑𝜔

= 𝑞2

𝑐2 𝜔 (1 − 1
[𝑛(𝜔) 𝛽]2

) (1.36)

where 𝑞 is the particle charge and 𝑛(𝜔) is the index of refraction of the medium, which is

typically frequency-dependent. As the proportionality of the spectrum in eq. (1.36) to 𝜔

indicates, the emission of Cherenkov radiation is more intense for higher frequencies. As

a result, Cherenkov radiation is perceived by the human eye as a blue glow (see fig. 1.5).

Equation (1.35) implies that there is a threshold kinetic energy

𝐸𝐶 = 𝑚 ( 𝑛√
𝑛2 − 1

− 1) , (1.37)

where 𝑚 is the particle mass, below which Cherenkov radiation will not be produced. For

water (which has an index of refraction of about 1.33 for visible light), the Cherenkov

threshold for electrons is 𝐸𝐶 ≈ 0.26 MeV, while for muons it is about 55 MeV. In a

water Cherenkov neutrino detector, an electron or muon created by a charged current

neutrino interaction is detected using the Cherenkov radiation that it produces when
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Figure 1.3: Induced dipoles created by an electrically charged particle traveling through
a dielectric material. LEFT: For a particle traveling with a speed less than the phase
velocity of light in the material, the distribution of the induced dipoles is symmetric.
RIGHT: If the particle exceeds the local phase velocity of light, then an asymmetric

pattern of induced dipoles is formed, resulting in the emission of Cherenkov radiation.
Figure from reference [105].

Figure 1.4: Cherenkov radiation induced by a charged particle is emitted (blue arrows)
in a cone around the particle’s direction of motion (red arrow). The cone has half

opening angle 𝜃 = arccos(𝑛−1𝛽−1), where 𝑛 is the index of refraction of the medium and
𝛽 is the (dimensionless) speed of the particle. Cherenkov radiation is emitted only for

𝛽 ≥ 1/𝑛. Figure from reference [106].



Figure 1.5: Cherenkov radiation is seen as a bright blue glow around the fuel plates of
the Advanced Test Reactor at Idaho National Laboratory. Figure from reference [107].

above threshold. Imaging the cone of light created by the particle provides information

about its energy and direction of propagation.

1.7.1.2 Photomultiplier tubes

The standard apparatus used to measure the flashes of light produced by charged par-

ticles in a water Cherenkov detector is the photomultiplier tube (PMT). Figure 1.6 is a

schematic showing the basic components of a PMT. When photons, such as those emitted

as Cherenkov radiation, pass through the PMT faceplate (typically a glass window) and

strike the photocathode, they may eject an electron by means of the photoelectric effect.

A vacuum is maintained within the PMT, allowing the electron to move freely in response

to an electric field that accelerates it toward a series of dynodes. As the electron strikes

each dynode, secondary electrons are emitted, amplifying the original single-electron sig-

nal created by the photon. After many such amplification steps, in which the secondary

electrons are themselves multiplied, a total of around 107 electrons per detected photon
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Figure 1.6: The basic components of a photomultiplier tube. The dynodes are held at
different voltages by connecting the stem pins to a suitable base containing a voltage

divider. Figure from reference [108].

is collected at the anode, resulting in a measurable pulse of current.

Although PMTs are exquisitely sensitive devices that are routinely used to detect

individual photons, they are not without limitations. One significant issue that affects all

PMTs is the presence of dark pulses, that is, current pulses registered by the PMT that do

not correspond to a photon striking the photocathode. Dark pulses are primarily the result

of random thermal excitations that cause an electron to be ejected from the photocathode.

Since the electrons thermally produced at the dynodes will not pass through as many

multiplication stages as electrons ejected from the photocathode, many dark pulses will

have relatively small amplitudes compared with pulses produced by a true photoelectron.

Another problem that must be considered when interpreting PMT signals is afterpuls-

ing: the tendency of a PMT to register one or more spurious small pulses (afterpulses)

following a large-amplitude signal pulse. Afterpulses are largely produced by two distinct

mechanisms [108]. Those that occur within nanoseconds to tens of nanoseconds after

the signal pulse are created by electrons that elastically scatter off of the first dynode

and are then reaccelerated toward it. Afterpulses that occur with a longer delay (tens

of nanoseconds to several microseconds) occur when photoelectrons ionize trace amounts

of gas within the PMT. The positively-charged gas ions are accelerated toward the pho-

tocathode and generate secondary electrons which may be mistaken for those produced

by photon interactions. To distinguish between the two afterpulsing mechanisms, some

authors (see, e.g., reference [109]) use the term late pulse to refer to an unwanted pulse
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that occurs at an early time while keeping the designation afterpulse for one that occurs

later.

Chapter 9 presents an analysis of PMT event rates for the ANNIE experiment in

which the importance of accounting for dark pulses and afterpulses will become apparent.

References [108, 109] provide many more details about PMT operation, circuitry, and

applications.

1.7.2 Liquid scintillator detectors

Like water Cherenkov neutrino detectors, liquid scintillator detectors, including Double

Chooz [110], KamLAND [111], and the planned Jiangmen Underground Neutrino Obser-

vatory (JUNO) [112], consist of a tank filled with a liquid target and instrumented with

photomultiplier tubes. In these detectors, however, the light that signals the presence of

neutrinos is obtained via scintillation, the production of visible or near-visible light by

certain materials in response to ionizing radiation.

Scintillating materials are typically chosen so that the light yield, i.e., the number

of emitted scintillation photons per unit of deposited energy, is large and approximately

linear in the deposited energy. Because the constant of proportionality will vary between

different particle species, the absolute light yield of a scintillator is often expressed in terms

of the amount of light produced by an electron with a given energy. Thus, an electron that

deposits 1 MeV in a scintillator is said to produce 1 MeV electron equivalent (1 MeVee)

of light (which will correspond to some particular number of scintillation photons), while

a proton may need to deposit several MeV to achieve the same light yield. Beyond a

high light yield, other desirable properties for scintillators include high transparency, fast

light emission, an index of refraction close to that of glass (for optimal optical coupling

to PMTs), and the ability to manufacture the material in large quantities [113]. Large

scintillating neutrino detectors typically employ hydrocarbon liquid scintillators, such as

linear alkylbenzene, as the target material.

While similar in many respects, water Cherenkov and liquid scintillator detectors

differ in the information that they are able to provide about neutrino events. Because

Cherenkov radiation is emitted in a cone around a particle’s direction of travel, a water
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Cherenkov detector may be used to determine a charged particle’s direction and kinetic

energy, thus enabling kinematic reconstruction of neutrino interactions [114]. However,

because of the energy threshold that must be exceeded before Cherenkov light may be

produced, this reconstruction is only possible for sufficiently high-energy events. On the

other hand, scintillator detectors are able to obtain signals from charged particles with

much lower energies, but the detected light is typically emitted isotropically, precluding

any detailed tracking of the neutrino reaction products.

Future large neutrino detectors, such as the proposed THEIA experiment [115], may

combine the advantages of water Cherenkov and scintillator detectors by using a target

made of water-based liquid scintillator (WbLS), a recently invented [116] chemically sta-

ble mixture of water and liquid scintillator. A WbLS-based detector could potentially

achieve excellent energy resolution and a low energy threshold for particle detection while

maintaining the directional sensitivity currently possible in water Cherenkov detectors

[117].

1.7.3 Neutron tagging in water and liquid scintillator

In both water Cherenkov and liquid scintillator detectors, the dominant reaction channel is

inverse beta decay (see eq. (1.3)). While the positron may be detected using Cherenkov or

scintillation light as appropriate, a detector containing pure water or pure hydrocarbon

scintillator will be relatively insensitive to the final-state neutron. Assuming that the

neutron remains in the detector, it is likely to capture on hydrogen to produce a 2.2 MeV

𝛾-ray. The low energy of this 𝛾-ray and long capture time (about 200 μs on average

for thermal neutrons in water), however, can limit the efficiency with which the neutron

capture may be identified and associated with the prompt signal from the positron.

At least as early as 1958, it was recognized [118] that the sensitivity of organic scin-

tillators to neutron captures might be increased by adding a small amount of a salt

containing gadolinium. In the early 2000s, a similar technique was proposed [119, 120] for

use in water Cherenkov detectors, with the first successful demonstration being reported

by Dazeley et al. [121] in 2009. Natural Gd has a very large thermal neutron capture

cross section (about 4.97 × 104 b versus 0.3 b for 1H), with the isotope 157Gd having the
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highest capture cross section (about 2.59 × 105 b) of any stable nuclide [122]. As a result,

the addition of even a modest amount of a gadolinium-containing material to pure water,

say, 0.2% of GdCl3 by weight,18 reduces the mean capture time of thermal neutrons in

the Gd-loaded water to 28 μs [121]. Neutron capture on gadolinium produces a cascade

of 𝛾-rays with a total energy of about 8 MeV, making such captures considerably easier

to detect than those on single protons [120].

The ability to tag neutrons using Gd-loaded scintillator or water provides considerable

benefits to neutrino experiments, e.g., by allowing discrimination between neutrino elastic

scattering on electrons (which will involve only a prompt Cherenkov or scintillation light

signal from the struck electron) and inverse beta decay (which will include a delayed

neutron capture signal). As a result, a number of liquid scintillator experiments, including

Double Chooz and Daya Bay [123], have been constructed using a Gd-loaded target. Up

to the present, two prototype Gd-loaded water Cherenkov neutrino detectors, EGADS

[124] and WATCHBOY [125], have been successfully operated. Phase II of the ANNIE

experiment is expected to be the first Gd-loaded water Cherenkov detector to observe

beam neutrinos [126]. It will soon be followed by WATCHMAN [127], a kiloton-scale Gd-

loaded water Cherenkov detector designed to demonstrate remote monitoring of nuclear

reactors via antineutrino detection, and Super-Kamiokande gadolinium (Super-K Gd)

[128], an upgrade to the Super-Kamiokande detector in which it will be filled with Gd-

loaded water.

1.7.4 Liquid argon time projection chambers

The liquid argon time projection chamber (LArTPC) is a kind of neutrino detector first

proposed in 1977 by Carlo Rubbia [129]. Examples of LArTPCs include MicroBooNE

[130], ICARUS [131], and the four far detector modules for the proposed Deep Under-

ground Neutrino Experiment (DUNE) [132]. Figure 1.7 illustrates the operational prin-

ciple of a LArTPC. The detector consists of a volume of liquid argon placed within a

uniform electric field generated between a cathode plane and a set of two or more anode

planes. Each anode plane is composed of a set of closely-spaced parallel wires, gener-
18This corresponds to a Gd weight fraction of 0.1%.
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Figure 1.7: Conceptual design of a liquid argon time projection chamber. Figure from
reference [133].

ally with a pitch of a few mm. The anode planes are positioned a small distance apart

and rotated with respect to each other so that no two anode planes share the same wire

orientation.

When a neutrino interaction occurs within the chamber, the charged reaction products

produce ionization tracks in the surrounding argon. The ionization electrons are pulled

toward the anode wire planes by the electric field. The drift speed depends on the field

strength, but the value of 1.1 mm/μs reported by MicroBooNE [134] for a 273 V/cm field

is typical. The choice of argon, a noble gas, as the target material enables the electrons

to drift over long distances without being absorbed. However, the argon in the detector

must be kept very pure since even small amounts of electronegative contaminants can

greatly reduce the expected lifetime of the drifting electrons.

As the electrons reach the inner anode wire planes, called the induction planes, they

induce electric currents in nearby wires. As shown in the portion of fig. 1.7 labeled

“V wire plane waveforms,’’ digitized signals coming from the induction planes exhibit a

bipolar shape that reflects the change in direction of the induced currents as the electrons

pass from one side of the plane to the other. The electrons continue to drift past the
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remaining induction planes until they reach the final anode plane, where they are collected

on the wires. Digitized signals on the wires of the collection plane (labeled “Y wire plane

waveforms’’ in the figure) are unipolar.

Thanks to the different wire orientations on each of the anode planes, digitized signals

from independent planes represent different views of the same event. By comparing the

pattern of wire hits registered on each plane, a two-dimensional image of the particle

trackes (in a plane parallel to the wire planes) may be reconstructed. If the event start

time (i.e. the time at which the neutrino interaction occurred) is known, then the times

of wire hits may be combined with the known electron drift speed and the dimensions of

the TPC to obtain full three-dimensional images of the charged particle tracks.

Because charged particles traveling through liquid argon create both ionization tracks

and scintillation photons, LArTPCs are often instrumented with photomultiplier tubes in

addition to the anode wire planes. The prompt flash of scintillation light created by the

products of a neutrino interaction may be detected by the PMTs and used to assign an

event start time. Since the intensity of the scintillation light also provides an independent

measurement of the energy deposited in the liquid argon, the PMTs and the wire planes

both record valuable information for detailed reconstruction of neutrino events.
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Chapter 2

Motivation for studying neutrino-nucleus

reactions

Although neutrino interactions with elementary particles are described with high precision

by the Standard Model, significant theoretical uncertainties arise in attempts to calculate

cross sections for neutrino scattering on atomic nuclei. While much progress has been

made in the past few decades on both theoretical and experimental fronts, the study of

neutrino-nucleus reactions remains a challenging field with many open questions. Within

the nuclear and particle physics communities, there is continuing interest in furthering

our understanding of these reactions not only because they provide a unique means of

probing nuclear structure, but also because of their importance for correctly interpreting

the results of experiments, including measurements of neutrino oscillations, studies of

astrophysical neutrinos, and searches for exotic new physics processes.

In this chapter, the relevance of neutrino-nucleus reactions to topics of current ex-

perimental interest at low (∼10 MeV) and medium (∼1 GeV) energies will be discussed.

Inadequacies in our present understanding of these reactions will be used to motivate

the two research projects that form the basis for this dissertation: (1) MARLEY (Model

of Argon Reaction Low Energy Yields), a theoretical model and associated event gen-

erator describing low-energy neutrino scattering on 40Ar, and (2) a characterization of

background neutron event rates in preparation for Phase II of the Accelerator Neutrino

Neutron Interaction Experiment (ANNIE), which will perform measurements of neutron
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Figure 2.1: Onion-like structure of a massive star (not drawn to scale) just before a
core-collapse supernova. Figure from reference [138].

production by neutrino interactions in water.

2.1 Supernova neutrinos

One area which will benefit from an improved understanding of neutrino-nucleus reactions

is the study of neutrinos produced in supernovae, enormous explosions that end the lives

of some stars. While these spectacular astronomical events have been observed for many

centuries,1 the modern scientific study of supernovae was initiated in the 1930s by Walter

Baade and Fritz Zwicky [136].

Supernovae may be sorted into two general categories based on the mechanism which

generates the explosion. In a thermonuclear (or Type Ia) supernova, a carbon-oxygen

white dwarf accretes matter from a neighboring star until it becomes sufficiently massive

for carbon fusion reactions to take place. A thermonuclear explosion is generated by the

sudden initiation of these reactions, ripping the white dwarf apart. Although this kind of

supernova is thought to generate neutrinos, they are produced in relatively small numbers

and with a low mean energy (∼3 MeV) [137]. Such an event would therefore have to occur

close to Earth (say, within a few kiloparsecs (kpc)) for its neutrinos to be detected, and

even then, a large detector with a low threshold would be needed.

Roughly ten thousand times more neutrinos [139] are produced by core-collapse su-

pernovae, the death throes of stars between about 8 and 40 solar masses. Near the end
1A description of a “guest star’’ by Chinese astronomers in 185 CE is thought to be the earliest written

record of a supernova [135].
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of its life, such a star has the onion-like structure shown in fig. 2.1, with a core made of

nickel and iron2 enveloped by shells of progressively lighter elements. In the outer layers,

the fusion of light elements into heavier ones generates heat that provides an outward

pressure to counteract the inward pull of gravity. However, because nickel and iron are

the most tightly bound of all nuclei, further fusion reactions involving these elements are

endothermic. Therefore, the iron core is not supported against gravitational collapse by

thermal pressure from fusion but rather by the pressure of degenerate electrons.

When the mass of the iron core exceeds the Chandrasekhar limit of 1.4 solar masses,

the electron degeneracy pressure is insufficient to withstand gravity. Gravitational com-

pression of the core causes its temperature and density to increase, and electron capture

reactions on protons

𝑒− + 𝑝 → 𝑛 + 𝜈𝑒 (2.1)

occur more readily. These reactions lower the electron pressure and allow the core collapse

to accelerate. The collapse continues for about one second until the inner part of the core

becomes as dense as nuclear matter (roughly 1014 g/cm3). At this point, as long as the

star is not too massive (less than about 40 solar masses), the degeneracy pressure of

nucleons within the core prevents further collapse. The sudden rebound of the inner core,

now referred to as a proto-neutron star, creates a shock wave that travels outwards and

leads to the supernova explosion.

During late stages of the collapse and early stages of the shock, the inner part of the

proto-neutron star is so dense that 𝜈𝑒 produced via electron captures remain trapped

behind the shock wave. Within a few milliseconds of the core bounce, the shock wave

reaches a region that has a low enough density to be transparent to neutrinos. When this

occurs, an intense few-millisecond pulse of neutrinos, mostly 𝜈𝑒, is released. This pulse is

often called the neutronization burst.

Although the collapse of the core stops abruptly, matter from outer parts of the star

continues to fall inward. In this accretion phase, which lasts for up to a second or two
2Stars at the low end of the mass range for core-collapse supernovae may initially have a core composed

of oxygen, neon, and magnesium rather than iron. However, these elements are converted to iron during
the collapse [59], and the generation of the explosion proceeds in the manner outlined here.
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after the neutronization burst, the shock wave stalls and the proto-neutron star grows as

it accretes the infalling material. The process that reenergizes the stalled shock wave and

leads to the supernova explosion is not fully understood. One plausible explanation is that

neutrino reactions generate heat in the region behind the stalled shock front. The buildup

of thermal pressure behind the shock front drives it outward, allowing the explosion to

proceed [140].

Following the revival of the shock, the supernova enters the cooling phase, in which the

hot proto-neutron star radiates away energy in the form of neutrinos and antineutrinos of

all flavors. These neutrinos are produced via a variety of weak processes within the star,

including electron pair annihilation

𝑒− + 𝑒+ → 𝜈 + ̄𝜈, (2.2)

electron-electron neutrino bremsstrahlung

𝑒± + 𝑒± → 𝑒± + 𝑒± + 𝜈 + ̄𝜈, (2.3)

electron-nucleon neutrino bremsstrahlung

𝑒± + 𝑁 → 𝑒± + 𝑁 + 𝜈 + ̄𝜈, (2.4)

photoannihilation

𝛾 + 𝑒± → 𝑒± + 𝜈 + ̄𝜈, (2.5)

and nuclear de-excitation by neutrino pair production

𝑍
𝐴X∗ → 𝑍

𝐴X + 𝜈 + ̄𝜈. (2.6)

A typical core-collapse supernova emits on the order of 1058 neutrinos with tens of MeV

energies in about ten seconds. For this brief period, the luminosity of the supernova in

neutrinos is comparable to the optical luminosity of the entire observable universe [141].

Despite being well known for their exceptional brightness, the electromagnetic radiation

produced by core-collapse supernovae represents only about 0.1% of the total energy

release, compared to the 99% emitted in the form of neutrinos.
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To date, the only supernova to be observed via its neutrinos was SN1987A, which

occurred in the Large Magellanic Cloud and was first detected on Earth on February 23,

1987. Several hours before the first optical signals arrived from SN1987A, three neutrino

detectors, Kamiokande-II [142, 143], IMB [144], and Baksan [145] recorded 12, 8, and 5

electron antineutrino events, respectively, over a period of about ten seconds. Despite the

limitations of such a small data sample, the neutrino signals from SN1987A have been

the subject of published analyses on a wide range of topics. Some of these include the

time profile of the expected neutrino signal [146], limits on a possible neutrino magnetic

moment [147], and a test of the weak equivalence principle3 [149], among many others.

While the SN1987A data have helped to confirm our basic understanding of core-

collapse supernovae, a high-statistics measurement of supernova neutrinos would be in-

valuable to both the astrophysics and neutrino physics communities. A few of the many

things4 that could be learned from such a measurement include: the total energy of the

explosion; whether collective effects (neutrino-neutrino scattering) significantly influence

the development of the supernova; whether interesting dynamical features seen in some

supernova models, such as the Standing Shock Accretion Instability (SASI) [152] or the

Lepton-number Emission Self-sustained Asymmetry (LESA) [153], are present; neutrino

properties, such as the mass hierarchy; and constraints on new physics beyond the Stan-

dard Model.

In recognition of the wide-ranging physics program that could be pursued using mea-

surements of neutrinos from the next nearby supernova, a worldwide network of neutrino

experiments called SNEWS (SuperNova Early Warning System) has been established

to “optimize global sensitivity to a core-collapse supernova signal’’ and enable multi-

messenger supernova measurements by providing a prompt alert to astronomical obser-

vatories [154, 155]. Currently, all large (kiloton scale) neutrino detectors that would be

sensitive to a core-collapse supernova occurring in or near our galaxy are water Cherenkov

or hydrocarbon scintillator detectors [156]. Both of these detector types are primarily sen-
3Also known as the “universality of free fall,’’ the weak equivalence principle states that “all bodies

fall with the same acceleration regardless of their mass and composition’’ [148].
4Reviews may be found in references [150, 151].
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sitive to electron antineutrinos via the inverse beta decay (IBD) reaction

̄𝜈𝑒 + 𝑝 → 𝑛 + 𝑒+. (2.7)

While the usefulness of a high-statistics sample of supernova IBD events should not be un-

derstated, measurements of neutrinos of all flavors are desirable to maximally exploit the

physics potential of a nearby core-collapse supernova. Although detectors based on wa-

ter and hydrocarbon scintillator will observe some 𝜈𝑒 events, both from neutrino-electron

elastic scattering and charged current absorption on composite nuclei (oxygen for water,

carbon for scintillator), these events will likely be difficult to distinguish from those due

to inverse beta decay, particularly in the absence of Gd loading. Additionally, since all

neutrino flavors will participate in neutral current elastic scattering from electrons, only

charged current reactions of 𝜈𝑒 with nuclei will allow a measurement of the supernova 𝜈𝑒

flux in isolation.

In contrast to neutrino detectors based on water and hydrocarbon scintillator, the dom-

inant reaction channel for supernova neutrinos in a liquid argon time projection chamber

(LArTPC) is charged current 𝜈𝑒 scattering on 40Ar:

𝜈𝑒 + 40Ar → 40K∗ + 𝑒−. (2.8)

Due to the large cross section for this process, a large LArTPC has the potential to

achieve unique sensitivity to the 𝜈𝑒 component of the neutrino flux from a supernova,

complementing and extending the physics reach of supernova neutrino measurements

obtained using other detection technologies. Although existing LArTPCs, such as the

600-ton ICARUS and 170-ton MicroBooNE detectors, would record only modest numbers

of neutrino events in response to a nearby core-collapse supernova (a combined total of

about 80 events for a supernova at 10 kpc from Earth), the planned Deep Underground

Neutrino Experiment (DUNE) will increase the expected number of events by more than

one and one-half orders of magnitude [156].

2.2 Supernova neutrinos in DUNE

Figure 2.2 depicts the basic components of the DUNE experiment. A neutrino beam

produced at Fermilab will be directed toward two neutrino detectors. The near detector,
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Figure 2.2: Conceptual design of the DUNE experiment. Measurements of a neutrino
beam will be performed using liquid argon time projection chambers at two locations to
study neutrino oscillations. DUNE will also pursue a rich science program beyond the

oscillation measurements, including the detection of 𝜈𝑒 from a possible nearby
core-collapse supernova.

located close to the beam production site, will measure the unoscillated neutrino flux using

a detector technology that is yet to be finalized. The far detector, located 1300 km away

at the Sanford Underground Research Facility near Lead, South Dakota, will include four

large LArTPCs with a total active mass of 40 kt. DUNE will perform precision studies

of neutrino oscillations by comparing measurements of the flavor content of the neutrino

beam at the near and far detectors. Apart from the DUNE neutrino oscillation program,

the two other primary science goals of the experiment are to search for proton decay5

and to “detect and measure the 𝜈𝑒 flux from a core-collapse supernova within our galaxy,

should one occur’’ within the lifetime of the experiment [132].

Figure 2.3 shows an example of one of the unique contributions that could be made

by DUNE to the worldwide supernova neutrino detection effort. Because the neutrinos

released during the neutronization burst are almost entirely 𝜈𝑒, one might expect to see a

large excess of events in DUNE at early times relative to the start of a supernova signal.

This possibility is shown in the blue histogram in fig. 2.3, which displays the expected time

distribution of supernova neutrino events (dominated by charged current 𝜈𝑒 scattering) in

DUNE when neutrino oscillations are neglected. However, when the effects of oscillations

are taken into account, the expected event time distribution in DUNE shows a strong
5See section 2.6.2 for a discussion of competing proton decay searches in water Cherenkov detectors.
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Figure 2.3: Predicted event time distribution for the detection of supernova neutrinos in
a DUNE-like 40 kt LArTPC. Only events from the earliest stages of the supernova,

assumed to have occurred at a distance of 10 kpc from Earth, are shown. All error bars
in the figure are statistical. Under the specific flux model (described in reference [157])
used in this calculation, the presence or absence of a clear excess of events during the

neutronization burst provides a means of determining whether the neutrino mass
hierachy is normal or inverted. Figure from reference [158].

dependence on the neutrino mass hierarchy. For an inverted hierarchy, the excess due to

the neutronization burst is suppressed but still detectable, while for the normal hierarchy it

is altogether absent. Thus, if neutrinos from a core-collapse supernova were to be detected

by DUNE, the presence or absence of the neutronization burst signal could provide a clear

indication of which of the two neutrino mass orderings is realized in nature. While the

results shown here were calculated for a specific supernova flux model [157], the general

conclusion that a neutronization burst measurement could allow DUNE to determine the

neutrino mass hierarchy is thought to be relatively model-independent [158].

Beyond the physics results that could be obtained by DUNE under fairly generic

assumptions about supernova dynamics, there are also scenarios under which DUNE

alone could provide a window into exotic supernova processes. A recent calculation by

Friedland and Mukhopadhyay [159], for example, suggests that collective effects due to

neutrino-neutrino interactions within a supernova may produce detectable signatures in
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the 𝜈𝑒 signal but not in the ̄𝜈𝑒 signal. DUNE’s high 𝜈𝑒 sensitivity and large active mass

make it the only detector capable of robustly observing such signatures for the foreseeable

future.

2.3 Supernova neutrino energy reconstruction in argon

While exciting as a means of performing a clean measurement of the 𝜈𝑒 flux from a

supernova, detection of low energy neutrinos in liquid argon is not without significant

challenges. In addition to the demanding technological requirements for DUNE’s proposed

supernova measurement, such as a low threshold for detecting the final-state electrons,

there exist more fundamental difficulties due to the use of a composite nucleus, 40Ar,

as the neutrino target.6 The complications for supernova neutrino detection in argon

that are introduced by nuclear physics effects are perhaps best understood when one first

considers neutrino energy reconstruction at low energies in a water Cherenkov or liquid

scintillator detector. In such a detector, the dominant IBD reaction (see eq. (2.7)) leads

to a positron and a neutron in the final state. The energy 𝐸𝜈 of the incident antineutrino

for such an event can be expressed as

𝐸𝜈 = 𝐸𝑒 + Δ𝑛𝑝 + 𝑇recoil (2.9)

where 𝐸𝑒 is the total energy of the outgoing positron, Δ𝑛𝑝 is the neutron-proton mass

difference, and 𝑇recoil is the kinetic energy of the recoiling neutron. At the low energies of

interest for supernova neutrinos, 𝑇recoil is small enough to be neglected. Therefore, since

Δ𝑛𝑝 is precisely known,7 the neutrino energy may be reliably determined using only a

measurement of the positron energy.

Supernova neutrino energy reconstruction in a LArTPC is considerably more chal-

lenging than in water Cherenkov and scintillator detectors because of the excited 40K∗

nucleus produced in the dominant charged current interaction (see eq. (2.8)). As in the

IBD case, one may write the initial neutrino energy 𝐸𝜈 in terms of three other variables:

𝐸𝜈 = 𝐸𝑒 + Δ𝑓𝑖 + 𝑇recoil. (2.10)
6The natural argon that will be used in DUNE is almost entirely (99.6% [160]) 40Ar. As a first

approximation, we will ignore the contributions of the other isotopes to the neutrino cross sections.
7Reference [161] gives the value Δ𝑛𝑝 ≡ 𝑚𝑛 − 𝑚𝑝 = 1.293 332 05(48) MeV.
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The recoil kinetic energy 𝑇recoil remains negligible in this case, and the total energy of the

outgoing electron 𝐸𝑒 may be measured if it produces a noticeable ionization track in the

TPC. The difficulties introduced by nuclear effects arise when one considers the nuclear

mass difference Δ𝑓𝑖, which is defined by

Δ𝑓𝑖 ≡ 𝑚𝑓 − 𝑚𝑖, (2.11)

where 𝑚𝑖 (𝑚𝑓) is the mass of the initial 40Ar (final 40K∗) nucleus. In contrast to Δ𝑛𝑝 from

the IBD case, the value of Δ𝑓𝑖 varies from event to event because of the many excited

states that exist within several tens of MeV above the 40K ground state.8 Each of these

excited states corresponds to a different mass 𝑚𝑓 via the relation

𝑚𝑓 = 𝑚𝑓,g.s. + 𝐸𝑥, (2.12)

where 𝑚𝑓,g.s. is the ground-state mass of a 40K nucleus and 𝐸𝑥 is the excitation energy.

Although it is possible for the charged current absorption of 𝜈𝑒 by 40Ar to proceed via

a transition directly to the ground state of 40K, this channel will be strongly suppressed

(“third-forbidden’’) due to the large spin-parity difference between the 40Ar ground state

(0+) and the 40K ground state (4−). Nearly all 𝜈𝑒 absorption events in liquid argon will

therefore involve transitions to excited 40K∗ nuclear levels, and indirect measurements

(discussed in detail in chapter 5) suggest that a substantial number of these levels will

be readily accessible. Since the branching ratios to each of the final-state nuclear levels

will depend on both the neutrino energy and on nuclear matrix elements representing

the relevant 40Ar → 40K∗ transitions, the distribution of Δ𝑓𝑖 created by low energy neu-

trino scattering will be sensitive to nuclear structure details and to the incident neutrino

spectrum in a complicated way.

To reconstruct Δ𝑓𝑖 (and thereby the incident neutrino energy 𝐸𝜈) in a LArTPC, one

must observe the nuclear de-excitation products from the 40K∗ nucleus. For neutrino re-

actions that populate low-lying nuclear levels, these will consist almost entirely of 𝛾-rays9

8Although excited states of individual nucleons exist, the lightest of these are the Delta(1232) baryons,
which have masses nearly 300 MeV higher than the neutron and proton. Thus, at the tens-of-MeV
energies of supernova neutrinos, IBD can only proceed via the creation of a final-state neutron, and
therefore Δ𝑛𝑝 = 𝑚𝑛 − 𝑚𝑝 should be used for every event.

9Orbital electrons may occasionally be emitted from the 40K atom instead of a 𝛾-ray in a process
called internal conversion.
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with energies of up to several MeV. While the 𝛾-rays will be difficult to measure pre-

cisely with a LArTPC (which will only indirectly observe them as they scatter on atomic

electrons), in principle one may obtain the value of Δ𝑓𝑖 for such events via the expression

Δ𝑓𝑖 = 𝑚g.s.→g.s. + ∑
𝑗

𝐸𝛾,𝑗 (2.13)

where the sum is over the measured 𝛾-ray energies 𝐸𝛾,𝑗 and

𝑚g.s.→g.s. ≡ 𝑚g.s.(40K) − 𝑚g.s.(40Ar) = 1.5044 MeV (2.14)

is the difference between the masses of the 40K and 40Ar ground states.

The reconstruction of Δ𝑓𝑖 becomes even more difficult in cases where the excitation

energy of the initial 40K level is sufficiently high for the nucleus to become unbound, i.e.,

it becomes energetically possible for de-excitation to proceed via the emission of a nucleon

or a heavier nuclear fragment like a deuteron or an alpha particle. As shown in fig. 2.4,

de-excitations from such a highly-excited nuclear level may proceed via many possible

channels. Many of these channels will leave the daughter nucleus in an excited state,

leading to the emission of additional 𝛾-rays or nuclear fragments. The resulting cascade

of successive de-excitations will continue until the ground state of the ultimate daughter

nucleus is reached. In this more general case, the nuclear mass difference Δ𝑓𝑖 may be

reconstructed via the relation

Δ𝑓𝑖 = 𝑚g.s.→g.s. + ∑
𝑗

(𝑆𝑗 + 𝑇𝑗) (2.15)

where 𝑇𝑗 is the kinetic energy of the 𝑗th nuclear de-excitation product and 𝑆𝑗 is its

separation energy, defined by

𝑆𝑗 ≡ 𝑚𝑗 + 𝑚𝑋−𝑗 − 𝑚𝑋. (2.16)

Here 𝑚𝑗 is the mass of the 𝑗th product, 𝑚𝑋 is the ground-state mass of the mother

nucleus 𝑋 that emits the 𝑗th product, and 𝑚𝑋−𝑗 is the ground-state mass of the daughter

nucleus.10 The sum over 𝑗 in eq. (2.15) includes all final-state particles emitted in the

event except for the electron and the ultimate daughter nucleus.
10Note that the expression given in eq. (2.15) reduces to that of eq. (2.13) if only 𝛾-rays are emitted.

This follows immediately from the recognition that, for the definition of the separation energy given here,
if the 𝑗th de-excitation product is a 𝛾-ray, then 𝑆𝑗 = 0.
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Figure 2.4: Charged current 𝜈𝑒 scattering on 40Ar will sometimes induce a transition to
a highly-excited 40K nuclear energy level above the proton and neutron emission

thresholds 𝑆𝑝 and 𝑆𝑛. When this occurs, de-excitation of the level may proceed via
many competing channels, including those shown in the diagram: 𝛾-ray emission,

neutron emission, and proton emission. If the daughter nucleus is itself left in an excited
state, one or more additional particles will be emitted in a cascade of de-excitation steps.

Even for a LArTPC that achieves a low detection threshold and good energy resolution

for charged particles, the sheer number of possible event topologies created by nuclear

de-excitations introduces considerable complexity into the problem of determining the

incident neutrino energy in a supernova 𝜈𝑒 event. A particularly worrisome prospect is

that a significant fraction of such events will involve nucleon emission. The separation

energy required to remove each emitted nucleon from the nucleus (typically about 8 MeV)

represents a sizeable portion of the original tens-of-MeV supernova neutrino energy. This

energy will be invisibly lost to the LArTPC unless a suitable means of tagging the emitted

nucleons can be developed. Doing so is likely to be challenging: the millimeter-scale

ionization tracks created by low-energy protons may be hard to distinguish from the start
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of the primary electron track, and, unless they are captured by an argon nucleus, low-

energy neutrons may escape without creating any discernible signals whatsoever in the

detector.

2.4 Monte Carlo methods for neutrino energy reconstruction

A common technique for studying the potentially complicated response of a detector

to incoming particles is the use of Monte Carlo simulations. Under this approach, a

probabilistic model of the primary particle interactions, implemented within a computer

code called an event generator, is used to randomly sample individual reactions occurring

within a simulated detector geometry. These reactions are represented by a list of the

final-state particles together with their 4-momenta at the moment that they emerge from

the event vertex, the location where the primary particle first interacted. Although event

generators produce results that are informative in their own right, they are most often

used in experimental analyses as part of a larger simulation chain, a set of computer

programs capable of producing simulated datasets that closely resemble the results of an

actual measurement. In addition to the event generator, a typical simulation chain will

include software tools to simulate secondary particle propagation through the detector,

model electronic signal generation by the detector components, and reconstruct kinematic

quantities of interest from these signals using the same methods employed for real data.

One common application of Monte Carlo simulations in the analysis of experimental

data is the calculation of a smearing matrix 𝐊 which connects the values of true kinematic

variables from a detector event with their reconstructed counterparts. In the context of a

measurement of the 𝜈𝑒 spectrum from a supernova, for instance, the elements 𝐾𝑖𝑗 of such

a matrix might be defined as

𝐾𝑖𝑗 ≡ 𝑃(𝐸𝑖 ≤ 𝐸reco
𝑣 < 𝐸𝑖+1 ∣ 𝐸𝑗 ≤ 𝐸true

𝑣 < 𝐸𝑗+1) (2.17)

where 𝑃 is the probability that an event generated by a neutrino with true energy 𝐸true
𝜈

within the 𝑗th true bin [𝐸𝑗, 𝐸𝑗+1) will be reconstructed so that the measured neutrino

energy 𝐸reco
𝜈 falls within the 𝑖th measured bin [𝐸𝑖, 𝐸𝑖+1). A measurement in which 𝑛𝑗

events were created by neutrinos with energies within the 𝑗th true bin would then be
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expected to yield

𝑛′
𝑖 = ∑

𝑗
𝐾𝑖𝑗 𝑛𝑗 (2.18)

counts in the 𝑖th measured bin, where the sum runs over all true bins. In matrix notation,

one may rewrite eq. (2.18) as

𝐧′ = 𝐊 𝐧. (2.19)

Equation (2.19) may be solved for the true neutrino spectrum 𝐧 by inverting the smearing

matrix:11

𝐧 = 𝐊−1 𝐧′. (2.20)

Because the exact smearing matrix needed for any particular physics measurement

will be unknown, experiments must rely on approximate matrices. From the results of

a Monte Carlo simulation, one may approximate the elements of the smearing matrix 𝐊

via

𝐾𝑖𝑗 ≈
𝑛𝑗→𝑖

𝑛𝑗
. (2.21)

Here 𝑛𝑗 is the total number of simulated events in which the true neutrino energy 𝐸true
𝜈

falls within the 𝑗th bin, and 𝑛𝑗→𝑖 is the number of these for which the simulated detector

signals yield a reconstructed energy 𝐸reco
𝜈 in the 𝑖th bin. For a sufficiently large sample of

Monte Carlo events (i.e., sufficiently large 𝑛𝑗), the statistical error associated with making

the approximation in eq. (2.21) will be negligible. The systematic errors that arise due to

inadequacies in the simulation models, on the other hand, require careful consideration

when a smearing matrix is used to interpret experimental data.

2.5 MARLEY: A new event generator for supernova neutrinos

In recent years, there has been extensive effort among LArTPC experiments to develop

the software infrastructure needed for precise event reconstruction and detailed Monte

Carlo simulations. The results of this effort are primarily embodied in LArSoft [165],

a flexible LArTPC software framework used by the DUNE, MicroBooNE [130], LArIAT
11In practice, direct inversion of the smearing matrix often leads to statistical difficulties that can be

avoided by using more sophisticated approaches. See references [162–164] for a detailed discussion of this
point.
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[166], ICARUS [131], and SBND [167] experiments, among others. Although the LArSoft

package is now sufficiently mature to have been used in a number of published physics

analyses [168–170], most of the existing event reconstruction algorithms (either provided

within LArSoft itself or via interfaces to external toolkits such as Pandora [171] and

Wirecell [172]) are optimized for use by medium-energy neutrino beam experiments.

A promising first step toward detailed reconstruction of LArTPC events at supernova

neutrino energies was made earlier this year by the ArgoNeuT collaboration, who reported

a preliminary first observation of MeV-scale energy depositions from neutrino-induced

nuclear de-excitation 𝛾-rays in a LArTPC [173]. In order for DUNE to meet its goal

of providing a high-statistics 𝜈𝑒 flux measurement in the event of a nearby supernova,

detailed simulation studies, informed by the ArgoNeuT results and any other relevant

data that become available, will need to be performed to characterize DUNE’s future

sensitivity and guide the design of the far detector modules.

Prior to the work presented in this thesis, a major obstacle to such simulation stud-

ies was the lack of a suitable event generator. While several standard neutrino event

generators (e.g., GENIE [174], NuWro [175], GiBUU [176], and NEUT [177]) currently

enjoy widespread use in analyses of neutrino beam experiments,12 the nuclear models

implemented in these generators universally adopt approximations that are inappropriate

for supernova neutrino scattering on composite nuclei. For example, conventional neu-

trino event generators use a relativistic Fermi gas (noninteracting nucleons bound inside

a constant potential well) as their baseline model of the target nucleus [178]. Even with

more theoretically rigorous approaches, such as the GiBUU13 transport model [179], there

remains no consideration of the nuclear level structure probed by low-energy neutrinos.

As noted in section 2.3, because of the many possible final states that may be created by

nuclear de-excitations, a realistic treatment of low-energy nuclear structure will likely be

crucial to a correct understanding of supernova neutrino energy reconstruction in LArT-

PCs. Therefore, despite their successes at higher energies, the lack of a detailed low-energy
12The Particle Data Group gives a review of current neutrino event generators in section 42 of reference

[78].
13Giessen–Boltzmann–Uehling–Uhlenbeck
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nuclear model in the standard neutrino event generators renders them inappropriate to

use to study neutrino scattering at tens-of-MeV and below on composite nuclei, including
40Ar.

In the first half of the remainder of this thesis, a theoretical model of low-energy

neutrino-nucleus scattering will be described, along with its implementation within a novel

event generator for charged current scattering of 𝜈𝑒 on 40Ar called MARLEY (Model

of Argon Reaction Low Energy Yields). The description of MARLEY will culminate

in chapter 7 with a presentation of example calculations performed using the generator.

Prospects for extending MARLEY to include additional reaction channels and other target

nuclei will also be discussed.

2.6 Neutron production in medium-energy neutrino scattering

At the intermediate energy scale (hundreds of MeV to few-GeV) of interest for atmo-

spheric and accelerator neutrinos, nuclear effects are an important consideration for

precision neutrino oscillation measurements and for background reduction in rare event

searches.

2.6.1 Oscillation measurements

In a neutrino oscillation experiment, the quantity that is directly measured is the rate

of detected events with a particular reconstructed topology. The selected event topology

may be expressed in terms of a set of one or more reconstructed variables 𝐩reco, including

kinematic quantities (e.g., momentum, scattering angle), final-state particle multiplicities,

etc. Ignoring some potentially important complications,14 the expected event rate 𝑁𝛼→𝛽

for an experiment measuring 𝜈𝛼 → 𝜈𝛽 oscillations may be written in the form [178]

𝑁𝛼→𝛽(𝐩reco) = ∑
𝑗

𝜙𝛼(𝐸true
𝜈 ) × 𝑃𝜈𝛼→𝜈𝛽

(𝐸true
𝜈 ) × 𝜎𝑗

𝛽(𝐩true) × 𝜖𝛽(𝐩true) × 𝑅𝑗(𝐩true, 𝐩reco),

(2.22)

where 𝐸true
𝜈 is the true neutrino energy, 𝜙𝛼(𝐸true

𝜈 ) is the energy-dependent flux of 𝜈𝛼

(ignoring oscillations) at the detector location, and 𝑃𝜈𝛼→𝜈𝛽
(𝐸true

𝜈 ) is the oscillation prob-

14Examples of these include detector backgrounds and the production of (anti)neutrinos other than 𝜈𝛼
by the source used in the experiment.
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ability (see section 1.5). The remaining factors represent the detector response:

• 𝜎𝑗
𝛽(𝐩true) is the cross section for the 𝑗th reaction induced by 𝜈𝛽, which results in a

final state described by the true event topology 𝐩true

• 𝜖𝛽(𝐩true) is the detection efficiency for an event with that topology

• 𝑅𝑗(𝐩true, 𝐩reco) is the probability that the true event toplogy 𝐩true created by the

𝑗th reaction will be reconstructed as 𝐩reco.

To obtain a measurement of neutrino oscillation parameters from such an experiment,

the expected event rates are fit to data. By varying the model parameters used to compute

the oscillation probability 𝑃𝜈𝛼→𝜈𝛽
(see section 1.5), one may obtain their best-fit values. In

order for the fit to produce accurate results, systematic errors, including those introduced

by the various factors in eq. (2.22), must be carefully accounted for and controlled. A

particularly difficult aspect of such analyses is that, in virtually all neutrino experiments,

the true neutrino energy 𝐸true
𝜈 is not known on an event-by-event basis.15 It must therefore

be inferred from the reconstructed event topology 𝐩reco observed in the detector. Because

the oscillation probability 𝑃𝜈𝛼→𝜈𝛽
is a function of the true neutrino energy, reconstructing

𝐸true
𝜈 accurately is an unavoidable and critical part of any neutrino oscillation analysis.

Neutrino energy reconstruction in oscillation measurements is typically based on one

of two general methods. The first of these, the kinematic method, relies on the selection of

a pure sample of charged current quasi-elastic (CCQE) events. In a quasi-elastic event, an

incident (anti)neutrino scatters on a single nucleon bound within the target nucleus, and

the remaining nucleons participate in the interaction only as spectators. Assuming that

the struck nucleon does not rescatter as it exits the nucleus, the final state of a CCQE

event will consist of a charged lepton, a single ejected nucleon, and a recoiling nuclear

remnant. A measurement of the total energy 𝐸ℓ and scattering angle16 𝜃ℓ of the outgoing

charged lepton in a CCQE event may be used to determine the incident neutrino energy
15A notable exception is a recent measurement [180] by the MiniBooNE collaboration, in which a shape-

only differential cross section was measured for monoenergetic 236 MeV muon neutrinos originating from
charged kaon decays at rest (𝐾+ → 𝜇+ + 𝜈𝜇).

16That is, the angle between the direction of the neutrino beam and the charged lepton 3-momentum
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𝐸true
𝜈 via the relation

𝐸true
𝜈 ≈ 𝐸reco,kin

𝜈 ≡ 2 (𝑚𝑁 − 𝑆𝑁) 𝐸ℓ + 𝑚2
𝑁 − (𝑚𝑁 − 𝑆𝑁)2 − 𝑚2

ℓ
2 (𝑚𝑁 − 𝑆𝑁 − 𝐸ℓ + |𝐩ℓ| cos 𝜃ℓ)

, (2.23)

where 𝑚𝑁 is the mass of the nucleon, 𝑆𝑁 is its separation energy, and 𝑚ℓ (𝐩ℓ) is the

mass (3-momentum) of the charged lepton. In the derivation of eq. (2.23), both the

recoil kinetic energy of the remnant nucleus and the neutron-proton mass difference are

neglected, and the separation energy of the struck nucleon is assumed to be constant [178].

While convenient to use because of its simplicity, the kinematic method is only valid

when it is used to reconstruct neutrino energies for true CCQE events. Experimentally,

these events are selected using topologies consistent with the CCQE hypothesis. For

example, due to the high Cherenkov thresholds for the recoil nucleus and ejected proton

produced in a 𝜈𝜇 CCQE event, only the outgoing muon is typically observed in a water

Cherenkov detector. Therefore, a neutrino oscillation measurement might be performed

in such a detector using a sample of events in which one muon and zero pions (1 𝜇 + 0 𝜋)

are detected. However, it should be noted that a number of other processes can lead to

final states which satisfy this selection.

Figure 2.5 illustrates the bias that results when the kinematic method, with its un-

derlying CCQE assumption, is used to reconstruct the neutrino energy for a sample of

1 𝜇 + 0 𝜋 events. In the upper plot, the black histogram shows the distribution of recon-

structed neutrino energies (predicted using the GENIE event generator) obtained using

the kinematic method for 1 GeV muon neutrinos scattering on a water target. Only

CCQE candidates (1 𝜇 + 0 𝜋 events) are included in the plot. While true CCQE events

make up the majority of those selected by the 1 𝜇 + 0 𝜋 criterion, the black histogram in-

cludes other event types in significant numbers. In stuck pion events, whose contribution

to the total is shown in red, a pion created by the initial neutrino interaction is reabsorbed

before it leaves the nucleus. In two particle-two hole (“2p-2h’’) events, shown in blue, the

neutrino scatters off of a correlated pair of nucleons instead of a single nucleon. Although

the black histogram would be expected to be symmetric about the true 1 GeV neutrino

energy for a pure CCQE sample,17 the asymmetric excess seen at low energies can largely
17Irreducible smearing around the true neutrino energy would still be present due to the nonzero initial
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Figure 2.5: Demonstration of the kinematic method for neutrino energy reconstruction
using simulated 1 GeV 𝜈𝜇 scattering events. In each of the three plots, which are

described in detail in the text, the black histogram represents the reconstructed neutrino
energy distribution for all events, while the red and blue histograms show the

contributions of “stuck pion’’ and 2p-2h events, respectively. Selecting a subset of events
with zero final-state neutrons (as shown in the lower left plot) noticeably improves the

quality of the energy reconstruction. Figure from reference [126].

be attributed to the presence of these two types of nuisance events.

Efficient neutron tagging in a water Cherenkov detector, enabled using Gd-loaded

water (see section 1.7.3), has the potential to significantly improve the selection of CCQE

events and therefore the kinematic reconstruction of the neutrino energy. The lower plots

in fig. 2.5 show the reconstructed neutrino energy distributions when events from the upper

plot are selected based on whether they include zero final-state neutrons (lower left) or

at least one neutron (lower right). According to the GENIE simulations shown here,

selecting the zero neutron events leads to a noticeable reduction of the 2p-2h and stuck

pion contributions and therefore to a more symmetric distribution of the reconstructed

neutrino energies.

A second method for neutrino energy reconstruction, the calorimetric method, may be

momentum of the struck nucleon.
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used by detectors that are sensitive to final-state hadrons. At the intermediate energies

of interest for beam-based neutrino oscillation measurements, the neutrino energy may

be reconstructed for a charged current event via the approximate expression [178]

𝐸true
𝜈 ≈ 𝐸reco,cal

𝜈 ≡ 𝐸ℓ + 𝜖𝑛 +
𝑛

∑
𝑖=1

𝑇𝑖 +
𝑚

∑
𝑗=1

𝐸𝑗. (2.24)

Here 𝐸ℓ is the total energy of the outgoing charged lepton, 𝜖𝑛 is the binding energy of the

𝑛 emitted nucleons, 𝑇𝑖 is the kinetic energy of the 𝑖th nucleon, and 𝐸𝑗 is the total energy

of the 𝑗th of the 𝑚 emitted mesons. While the calorimetric method has the advantage that

it does not make any assumptions about the true event topology, accurately identifying

all of the emitted hadrons (since the detector response may vary with the particle type)

and measuring their energies is far from trivial. Missing energy imparted to undetected

final-state neutrons is a particularly troublesome problem for this method.

Regardless of the technique used to reconstruct the incident neutrino energy, oscil-

lation analyses must rely on models, typically implemented within event generators, in

order to assess systematic uncertainties that arise from nuclear effects. For kinematic

reconstruction, a generator is needed to predict the contributions of non-CCQE reaction

channels to a sample of events selected based on an observed topology, while one is needed

in calorimetric reconstruction in order to account for energy loss to unreconstructed parti-

cles. Since nuclear model uncertainties are often among the largest sources of systematic

error for neutrino oscillation measurements,18 a more accurate description of neutrino-

nucleus interactions in event generators will be needed if future precision oscillation ex-

periments are to achieve their goals. Despite considerable recent progress in improving

neutrino event generators and validating them against experimental measurements, neu-

tron emission in medium-energy neutrino scattering remains poorly understood, with dif-

ferent generators giving markedly different predictions of neutron multiplicity and energy

distributions [164]. A direct measurement of the kinematic dependence of the neutron

yield from (anti)neutrino scattering events would therefore provide valuable constraints

on the nuclear models to be used in future oscillation analyses.
18See, e.g., recent publications [181, 182] by the T2K collaboration.

47



2.6.2 Rare event searches: proton decay

Ever since the development of the Glashow-Weinberg-Salam model, a unified theory of

the electromagnetic and weak interactions (see section 1.4), there has been interest in

creating a Grand Unified Theory (GUT) in which the strong and electroweak interactions

are similarly explained in terms of a single fundamental interaction at high energies. A

common prediction of all proposed GUTs [183] is the non-conservation of baryon number,

an additive quantum number defined as the number of baryons in a system minus the

number of antibaryons. Despite the current lack of experimental evidence for baryon

number violation, GUTs remain theoretically well-motivated, and searches for baryon

number violating processes are ongoing at ever-increasing sensitivity.

If baryon number is truly conserved, then, because the proton is the lightest baryon,

it must be absolutely stable. Even a single unambiguous observation of proton decay

would therefore provide conclusive evidence of the non-conservation of baryon number.

Recently, the Super-Kamiokande experiment has set world-leading limits [184] on the

partial lifetimes for two proton decay modes. If we define 𝜏 to be the mean lifetime of

the proton and 𝐵(𝑝 → 𝑋) to be the branching ratio for the decay of the proton into final

state 𝑋, then the limits on proton decay from Super-Kamiokande may be written as

𝜏/𝐵(𝑝 → 𝑒+ + 𝜋0) > 1.6 × 1034 years,

𝜏/𝐵(𝑝 → 𝜇+ + 𝜋0) > 7.7 × 1033 years. (2.25)

In the analysis used to obtain these limits, it was noted that proton decays could be

distinguished from the dominant background, atmospheric neutrino interactions, using

a neutron tagging technique. In contrast to proton decays in water, which will only

rarely produce a neutron via the de-excitation of an oxygen nucleus [185], atmospheric

neutrino interactions will often produce one or more neutrons in the final state via a variety

of mechanisms [184]. In order to continue to improve these limits and, e.g., possibly

observe the decay 𝑝 → 𝑒+ + 𝜋0 with the partial lifetime of approximately 1035 years

predicted by some GUTs [183], more precise estimates of the expected neutron yields

from atmospheric neutrino reactions in water are desirable. Since these yields are not
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well-understood theoretically, a direct measurement of neutron production by neutrinos

in the atmospheric energy range would greatly benefit future proton decay searches in

water Cherenkov detectors.

2.6.3 Rare event searches: the Diffuse Supernova Neutrino Background

In addition to their relevance for proton decay, atmospheric neutrino interactions are

also a hindrance to the effort to discover the Diffuse Supernova Neutrino Background

(DSNB), the faint flux of neutrinos emitted from all past core-collapse supernovae [186].

The DSNB has not yet been directly observed, but some neutrino experiments, such

as Super-Kamiokande [187] and KamLAND [188], have set upper limits on the DSNB

̄𝜈𝑒 flux. Detection of the DSNB could lead to progress in a number of different areas,

including constraints on the supernova rate within the observable universe, the fraction

of “failed’’ supernovae that form black holes, and a variety of proposed exotic physics

processes [189]. It could also enable a measurement of the average supernova neutrino

spectrum, which could be compared to galactic core-collapse observations to determine

how much the spectrum varies between stars [186].

Although almost certainly present, the DSNB remains unobserved because there are

several backgrounds in the same energy range which are hard to eliminate [190]. Above

about 20 MeV, for example, the dominant background comes from the production of

sub-Cherenkov-threshold muons by low-energy atmospheric neutrinos [120]. Through the

decays

𝜇+ ⟶ 𝑒+ + 𝜈𝑒 + ̄𝜈𝜇 (2.26)

and

𝜇− ⟶ 𝑒− + ̄𝜈𝑒 + 𝜈𝜇, (2.27)

these muons produce Michel (anti)electrons, which may be mistaken for antielectrons

produced in a ̄𝜈𝑒 inverse beta decay reaction.

In 2004, John Beacom and Mark Vagins proposed enabling high-effiency neutron tag-

ging in water Cherenkov detectors by adding 0.2% gadolinium trichloride to the water

[120]. Gadolinium has a remarkably high capture cross section for thermal neutrons,19

19The thermal neutron capture cross section for natural gadolinium is about 49 000 barns versus 0.33
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and it emits a 𝛾-ray cascade with a total energy of approximately 8 MeV following each

capture. An average of 4.3 MeV of this energy is visible in a water Cherenkov detector,

with most of the rest being lost to Compton-scattered electrons below the Cherenkov

threshold [191]. Detecting the prompt 𝑒+ together with the delayed neutron capture

gammas from inverse beta decay events is expected to reduce the atmospheric neutrino

background for a DSNB measurement considerably, since muon decays do not produce

neutrons [186]. However, some atmospheric neutrino reactions will produce both a low-

energy muon and a neutron in the final state. A measurement of the neutron yield from

intermediate energy neutrino reactions in water would therefore be beneficial in the effort

to discriminate between background and a DSNB signal.

2.7 The ANNIE experiment

Motivated by the usefulness of understanding neutron production by medium energy

neutrinos, the upcoming second phase of the Accelerator Neutrino Neutron Interaction

Experiment (ANNIE) will make a systematic measurement of neutrino-induced neutron

production using the Fermilab Booster Neutrino Beam [126]. This measurement will be

performed using the 26-ton water Cherenkov detector shown in the concept drawing in

the top panel of fig. 2.6. From left to right, sketches depict the three major components

of the detector: a wall of scintillator paddles used to detect and reject muons produced

by neutrino interactions upstream of the detector (the front veto); a tank filled with Gd-

loaded water and lined with photodetectors; and a segmented steel-scintillator sandwich,

called the Muon Range Detector (MRD), used to measure the direction and energy of

muons produced in neutrino interactions within the tank.

The bottom panel of fig. 2.6 shows the stages of a typical ANNIE signal event (drawn

from left to right) that will be selected for the neutron yield analysis. When a muon is

produced inside the water volume by a charged current neutrino interaction, its trajectory

and energy are reconstructed using the Muon Range Detector (MRD) and the tank pho-

todetectors. Neutrons produced at the neutrino vertex scatter within the tank and reach

barns for hydrogen.

50



Figure 2.6: TOP: A concept drawing of the completed Phase II ANNIE detector. The
neutrino beam travels from left to right in the perspective shown here. BOTTOM: The
stages of a typical ANNIE signal event, shown from left to right and described in the

text. Figure from reference [126].

thermal energies (∼0.025 eV). Within tens of μs, the neutrons capture on gadolinium

nuclei. Each capture leads to a de-excitation 𝛾-ray cascade with a total energy of about

8 MeV. The 𝛾-rays from the neutron captures scatter within the water volume, leading

to the production of Cherenkov light which is reconstructed by the photodetectors.

Because neutrino interactions near the edges of the tank may often produce neutrons

that escape the water and thus go undetected, obtaining a sample of fully-contained

events will be crucial to the success of the neutron yield analysis. In ANNIE, this will

be accomplished via fiducialization, the designation of a portion of the active volume of

a detector as the region of interest, or fiducial volume, within which all events used in

an analysis must occur. For the neutron yield measurements, ANNIE will use a 2.5 m3

fiducial volume, represented in the lower panel of fig. 2.6 by the dashed box, which was
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chosen based on simulation studies of neutron containment, neutron detection efficiency,

and the muon acceptance of the MRD. In one year of data taking, ANNIE is expected to

observe about 14 000 CCQE events occurring within the fiducial volume, about 30% of

which will produce a muon that enters the MRD [126].

Unlike LArTPCs, which enable precise three-dimensional reconstruction of neutrino

events, a water Cherenkov detector equipped solely with conventional photomultiplier

tubes would be incapable of measuring the position of neutrino interaction vertices with

sufficient resolution to achieve the fiducialization needed for the proposed ANNIE mea-

surement. To address this problem, ANNIE will be the first experiment to make use of

a recently-developed technology, the Large Area Picosecond Photodetector (LAPPD), in

the context of an actual physics measurement. Figure 2.7 shows the operational prin-

ciple of an LAPPD. A photon passes through a glass window and strikes the LAPPD’s

photocathode, liberating an electron via the photoelectric effect. The electric potential

difference between the photocathode and the anode accelerates the electron toward a pair

of microchannel plates. Each microchannel plate contains many pores with a diameter of

around 10 μm or less. Collisions of the primary electron with the walls of the pores, which

are oriented at an angle with respect to the photocathode, lead to the generation of an

exponentially-increasing number of secondary electrons. After passing through both of

the plates, the electrons are collected at the anode, which is divided into micro-striplines

that are instrumented and grounded at both ends. The position at which the photon

hit the photocathode is inferred along the length of a stripline by measuring the time

difference between the arrival of charge at each end. Calculation of a weighted centroid

of the charge collected on neighboring striplines allows a determination of the position

of the photon hit in the transverse direction [192]. The use of extremely fast electronics

(e.g., PSEC4 integrated circuits [193]) to digitize LAPPD signals allows these devices to

achieve a time resolution in the tens of ps and a photon hit position resolution better

than 1 mm [194].

Figure 2.8 illustrates the dramatic improvement in vertex position reconstruction that

the addition of even a few LAPPDs can provide for ANNIE. The left-hand plot shows the
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Figure 2.7: Schematic of a Large Area Picosecond Photodetector (LAPPD). Figure from
reference [192].

distribution of Δ𝑟, the difference between the reconstructed and true vertex radial coor-

dinates, for simulated charged current neutrino events in ANNIE. In the blue histogram,

this reconstruction was carried out using 128 conventional PMTs (covering about 20% of

the inside of the tank) and zero LAPPDs. In the red histogram, five simulated LAPPDs

were also used to reconstruct the vertex locations. Cumulative distributions for the two

cases are shown in the right-hand plot. Using the conventional PMTs alone yields a radial

position resolution (defined as the 68th percentile value of Δ𝑟) of 38 cm, while adding

five LAPPDs improves the resolution to 12 cm. Refining the existing reconstruction algo-

rithms and including additional LAPPDs could both contribute to further improvements

to the vertex resolution. However, early studies by members of the collaboration support

the conclusion that five LAPPDs will be a sufficient number to achieve ANNIE’s baseline

physics goals, including the neutron yield measurements [126].

To obtain the data needed for the neutron yield analysis, the ANNIE detector will

be placed in an experimental hall previously used by the SciBooNE experiment [196]

and will be exposed to neutrinos from the Booster Neutrino Beam (BNB) at Fermilab.

Because the hall is located only 100 m away from the beam target, the intense neutrino flux

therein will enable ANNIE to make high-statistics measurements. However, this proximity
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Figure 2.8: Results of a simulation study of neutrino vertex reconstruction in ANNIE.
Raw (left) and cumulative (right) distributions of Δ𝑟, the difference between the

reconstructed and true values of the vertex radial coordinate, are shown for simulated
events detected by 128 conventional PMTs (blue) and the same number of PMTs plus 5

LAPPDs (red). The gray lines in the right-hand plot mark the location of the 68th
percentile value for the two distributions. Figure from reference [195].

to the target comes with a cost: as will be discussed in detail in chapter 8, neutrons

created by processes associated with the production of the beam could represent a large,

potentially devastating source of background. To ensure that the beam-correlated neutron

backgrounds will not preclude ANNIE’s planned physics measurements, the collaboration

has adopted a phased approach to the detector deployment. In preparation for ANNIE

Phase II, in which the neutron yield measurement will be performed using the full detector,

the ANNIE collaboration has successfully completed Phase I, an in situ characterization

of neutron backgrounds using a partially instrumented version of the ANNIE detector.

The second half of this thesis will describe this background measurement and present

an analysis with the conclusion that, under very conservative assumptions, the neutron

backgrounds at the planned site of ANNIE Phase II will be sufficiently low for the physics

measurements to proceed.
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Chapter 3

Cross section model

Although accurate calculations of neutrino-nucleus cross sections are challenging in all

energy regimes, the effects of nuclear structure present unique difficulties at the low ener-

gies of interest for supernova neutrinos (∼10 MeV). Despite the vast theoretical literature

that has emerged on this topic in the past half century,1 the only nuclear targets heavier

than deuterium for which any cross section data are available in the supernova neutrino

energy range are 12C, 56Fe, and 127I [200, 202]. Even for 12C, the best understood of

these, the measured cross sections are known to a precision of no better than 10–20%

[156].

To maximize the physics impact of a future high-statistics measurement of neutrinos

from a nearby supernova, our present limited understanding of tens-of-MeV neutrino-

nucleus scattering will need to be improved. This is particularly true for the proposed

Deep Underground Neutrino Experiment (DUNE), since supernova neutrino events within

its liquid-argon-based far detectors are expected to be dominated by charged current

𝜈𝑒 reactions on 40Ar, a medium-size nucleus [203]. By contrast, all other kiloton-scale

neutrino detectors planned for the foreseeable future (which will be exclusively water-

and oil-based) will detect much simpler ̄𝜈𝑒 captures on protons as their primary supernova

signal [156].

Because of the limitations of the currently available experimental data, theoretical
1See [197–199] for dedicated reviews and references [200, 201] for more recent review articles that

include discussions of tens-of-MeV neutrino cross sections.
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models of low-energy neutrino-nucleus cross sections are needed as a means of estimating

the sensitivity of future supernova neutrino detectors and informing their design. This

chapter briefly reviews the current theoretical literature and then presents a derivation

of approximate neutrino-nucleus cross section formulae that have been adopted for use in

MARLEY.

3.1 Formalisms for low-energy neutrino-nucleus cross sections

Theoretical models of low-energy neutrino-nucleus scattering can be grouped into two

major categories: (1) microscopic approaches, which consider the detailed structure of

the nucleus using a model (such as the nuclear shell model or one of several variants of

the random phase approximation) of the nuclear wavefunctions, and (2) macroscopic ap-

proaches, which parameterize cross sections in terms of overall nuclear properties without

recourse to nuclear wavefunctions [204]. In the discussion of each of these approaches

below, we will neglect for brevity a significant body of theoretical work that is specific

to neutrino scattering on very light (𝐴 ≲ 4) nuclei, e.g., neutrino-deuterium cross section

calculations via effective field theory (EFT) methods. The interested reader is encouraged

to refer to recent reviews (examples include references [201, 205, 206]) which discuss that

work.

3.1.1 Microscopic models

The most commonly used microscopic formalism for calculating neutrino-nucleus cross

sections at low energies was introduced in the early 1970s by Walecka, Donnelly, and

collaborators [207–213]. Based on previous theoretical descriptions of electron scattering

[214] and muon capture (e.g., [215–217]), they put forward a unified treatment of semi-

leptonic2 weak and electromagnetic interactions in nuclei, including beta decay, electron

scattering, muon capture, and both charged and neutral current neutrino reactions. They

then applied this formalism to a variety of specific calculations in a series of papers over

the rest of the decade [218–224]. The Walecka-Donnelly approach was soon adopted by

other researchers and continues to be used in many neutrino cross section calculations
2Involving a mixture of leptons and hadrons in the final state
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today (see, e.g., [225–230]).

The major steps in the derivation of the Walecka-Donnelly expressions for neutrino

scattering cross sections include (1) neglecting the gauge boson field and writing the

effective interaction Hamiltonian density at low energies as the product of a leptonic

current and a nuclear current, (2) assuming that the matrix elements of the full nuclear

current may be written as a sum of single-nucleon terms (the impulse approximation),

(3) writing down the most general form of the single-nucleon current operator consistent

with symmetry constraints, then approximating it to a given order (usually first, but see

[231] for a detailed discussion of the second-order corrections) in inverse powers 1/𝑚𝑁 of

the nucleon mass, and (4) performing a multipole expansion of the nuclear current. The

cross section that emerges from these steps is expressed in terms of the matrix elements

of seven independent multipole operators, three from the vector current and four from

the axial-vector current. These seven matrix elements may be conveniently evaluated for

nucleon wavefunctions expressed in a harmonic oscillator basis using tables prepared by

Donnelly and Haxton [224] or using a Mathematica [232] package created by Haxton and

Lunardini [233].

Alongside the Walecka-Donnelly procedure, two related microscopic formalisms are

present in the neutrino cross section literature. The first of these, developed by Ku-

ramoto et al. [234–236] around 1990, is sometimes seen in publications by other authors

(e.g., [237–239]), including a recent calculation by Civitarese and Tarutina [240]. Ku-

ramoto’s formalism makes the same basic assumptions as Walecka and Donnelly, but the

single-nucleon current operator is approximated to third order in |𝐪|/ 𝑚𝑁 (where 𝐪 is the

3-momentum transfer) and zeroth order in ∣𝐩𝑁𝑖
∣ /𝑚𝑁, where 𝐩𝑁𝑖

is the initial nucleon

3-momentum. This choice results in cross sections which depend on only three distinct

nuclear matrix elements.

A second related microscopic formalism has been put forward in recent years by Krm-

potić and Samana [241–244] and has been implemented in QRAP [245], a computer pro-

gram for performing muon capture rate and charged current neutrino-nucleus cross section
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calculations using the QRPA3 and PQRPA4 models for the nuclear matrix elements. Krm-

potić and Samana follow the same four steps described above for the Walecka-Donnelly

formalism, including keeping terms up to first order in 1/𝑚𝑁 when evaluating the single-

nucleon current operator. However, they obtain simpler expressions for muon capture

rates and charged current neutrino cross sections, both of which depend on only four

nuclear matrix elements.5 As of this writing, the Krmpotić-Samana formalism has not

appeared in published material outside of articles written by its creators (e.g., [204, 246,

247]). Since it is essentially equivalent to the popular Walecka-Donnelly approach, it may

nevertheless see wider use in the future.

3.1.2 Macroscopic models

In contrast to the three formalisms described above, all of which rely on the impulse ap-

proximation and models for the nuclear wavefunctions, a macroscopic, model-independent

alternative called the elementary particle treatment (EPT) was introduced in the 1960s

for muon capture [248–250] and applied to neutrino scattering on 12C by Fukugita in 1988

[251]. Under the EPT, the target nucleus is treated as a single “elementary particle,’’ and

the matrix elements describing neutrino interactions with it are parameterized in terms

of nuclear (as opposed to single nucleon) form factors that must be determined using

experimental measurements. In practice, obtaining the form factors needed to compute

EPT neutrino cross sections is difficult, although successful calculations have been per-

formed for 2H [201] and 12C [251]. For the 12C case, the EPT cross sections for neutrinos

show good agreement with similar estimates performed using variations of the Walecka-

Donnelly method, but the predictions differ markedly for antineutrinos [241, 252].

Models from a second class of macroscopic theories of neutrino-nucleus scattering,

referred to as either “statistical’’ [253, 254] or “gross’’ [255] theories, are often used to

estimate neutrino reaction rates in astrophysical nucleosynthesis calculations. These mod-

els are derived by starting with an approximate expression for a neutrino cross section
3Quasiparticle Random Phase Approximation
4Projected Quasiparticle Random Phase Approximation
5Equations relating the seven Walecka-Donnelly matrix elements and the three Kuramoto matrix

elements to the four of Krmpotić and Samana are given in reference [242].
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obtained using a microscopic theory. This is typically [253, 255, 256] the allowed approx-

imation6 cross section, i.e., the zero momentum transfer limit of the Walecka-Donnelly

(or either of the other two microscopic formalisms mentioned above) cross section when

the expansion of the nuclear current operator is carried out only to zeroth order in 1/𝑚𝑁.

However, rather than being evaluated directly, as they would be in a microscopic ap-

proach, the nuclear matrix elements are instead expressed in terms of strength functions,

that is, semi-empirical parameterized functions of the excitation energy of the final-state

nucleus that describe the average behavior of the matrix elements. Higher-order cor-

rections beyond the allowed approximation are sometimes considered in this simplified

treatment, either by using a more complicated starting expression for the cross section

[254] or by adopting a value for the total cross section per nucleon based on the average

of microscopic calculations of the cross sections for many different nuclei [256, see also

reference 16 therein].

Statistical models of neutrino-nucleus scattering provide a simple means of obtaining

total cross sections that agree reasonably well with microscopic approaches. However,

because these models use strength functions that represent the energy-averaged behavior

of the matrix elements, their ability to predict partial cross sections to individual nuclear

levels will be more limited. While this problem can partially be remedied at high excitation

energies7 by averaging over groups of closely-spaced nuclear levels, such a solution fails

at low excitation energies where the individual levels are well-separated and have small

widths.

3.1.3 A cross section formalism for MARLEY

Due to the limitations of the macroscopic models reviewed above, a microscopic treatment

of the cross sections for tens-of-MeV neutrino-nucleus scattering appears to be the best

choice for implementation in a Monte Carlo event generator. Although any of the three

microscopic formalisms described above would be a reasonable choice to use as a basis for
6This approximation originated in the beta-decay literature. See reference [257] for a review of the

early years of theoretical research on beta decay, including a discussion of the allowed approximation in
that context.

7Say, a little above the neutron emission threshold
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MARLEY, adopting them in their original form might limit the ability of MARLEY users

to fully understand how the generator works. Because the Walecka-Donnelly approach to

semileptonic nuclear reactions was developed decades ago when the Glashow-Weinberg-

Salam theory of the electroweak interaction had just emerged, the original publications

describing the formalism use notation and conventions (e.g., a Euclidean Minkowski met-

ric) which may be unfamiliar to readers who first learned about quantum field theory and

neutrino interactions using recent textbooks. The same is true of the papers describing the

Kuramoto and Krmpotić-Samana formalisms, which preserve many aspects of Walecka

and Donnelly’s original presentation.

In an effort to make the details of the calculation more accessible to current students,

the remainder of this chapter presents a new derivation with more modern notation of

cross section formulae for low-energy neutrino-nucleus scattering. This derivation begins

with a discussion of neutrino-quark scattering at tree level, a relatively simple process for

which a cross section calculation might be assigned as homework in a standard graduate-

level course on weak interactions. The discussion then follows Krmpotić and Samana’s

approach [242] the most closely as it proceeds through the four steps outlined above,

culminating in expressions for neutrino cross sections, evaluated both to order 1/𝑚𝑁 and

under the allowed approximation, that are similar to theirs. Chapters 5 and 6 will revisit

the allowed approximation cross sections and discuss how they have been used to create

an initial version of the MARLEY generator. Prospects for improving the code to use the

full 1/𝑚𝑁 treatment will also be discussed in chapter 7

Beyond changes in notation, the derivations given in the remainder of this chapter

differ from previous work in two major ways. First, the final expressions for the cross

sections are evaluated in the center-of-momentum (CM) frame instead of the usual lab-

oratory frame. This choice of frame is far more convenient to use within the MARLEY

event generator because the CM frame outgoing lepton energy is independent of the scat-

tering angle, which facilitates straightforward Monte Carlo sampling of the latter. Second,

the neutral current cross sections that are derived in this chapter are expressed in terms

of matrix elements similar to those used by Krmpotić and Samana. Although Donnelly,
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Walecka, and collaborators [209, 211] provided a treatment of neutral current cross sec-

tions using their formalism, the same has not yet been done in published work for either

of the other two microscopic formalisms mentioned above. The expressions for neutral

current cross sections derived in this chapter, therefore, may be viewed as an extension

of the Krmpotić-Samana formalism, albeit with somewhat modified notation.

For definiteness, the presentation below will initially be restricted to charged current

neutrino scattering. The neutral current and antineutrino charged current cross sections

will then be examined in light of the approach used previously.

3.2 From neutrino-quark to neutrino-nucleon scattering

In the Standard Model, the charged current interaction is described by the Lagrangian

density

ℒ𝑊 = − 𝑔
2
√

2
(𝐽𝜇

𝑊𝑊 −
𝜇 + 𝐽𝜇†

𝑊 𝑊 +
𝜇 ) (3.1)

where 𝑊 ±
𝜇 is the 𝑊 boson field, 𝑔 is the SU(2) gauge coupling constant, and 𝐽𝜇†

𝑊 is the

weak charge-raising current. This current may be written in the form8

𝐽𝜇†
𝑊 = ( ̄𝜈𝑒 ̄𝜈𝜇 ̄𝜈𝜏) 𝛾𝜇(1 − 𝛾5)

⎛⎜⎜⎜⎜⎜
⎝

𝑒−

𝜇−

𝜏−

⎞⎟⎟⎟⎟⎟
⎠

+ (�̄� ̄𝑐 ̄𝑡) 𝛾𝜇(1 − 𝛾5)𝑉CKM

⎛⎜⎜⎜⎜⎜
⎝

𝑑

𝑠

𝑏

⎞⎟⎟⎟⎟⎟
⎠

, (3.2)

where 𝜈𝑒, 𝜈𝜇, and 𝜈𝜏 are neutrino flavor eigenstate fields, the other field operators (𝑒−,

𝑢, etc.) are expressed in the mass basis, and the 3×3 Cabibbo-Kobayashi-Maskawa ma-

trix 𝑉CKM connects the quark mass eigenstates to their weak eigenstates. The Lorentz-

invariant amplitude ℳ for charged current scattering of a neutrino on a free down quark

may be computed to lowest order in the coupling constant 𝑔 using the tree-level diagram
8Following reference [49], we neglect neutrino masses in this expression and define the neutrino flavor

eigenstate fields 𝜈𝑒, 𝜈𝜇, and 𝜈𝜏 as the weak interaction partners of the corresponding charged lepton
mass eigenstate fields.
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𝑖ℳ =
𝑞

𝑊

𝜈ℓ

ℓ−

𝑑

𝑢

= −𝑔2 𝑉𝑢𝑑
8

�̄�ℓ(𝑝ℓ)𝛾𝜇(1 − 𝛾5)𝑢𝜈ℓ
(𝑝𝜈ℓ

) 𝑃 𝜇𝜈
𝑊 �̄�𝑢(𝑝𝑢)𝛾𝜈(1 − 𝛾5)𝑢𝑑(𝑝𝑑), (3.3)

where 𝑉𝑢𝑑 is the CKM matrix element connecting the up and down quarks, and

𝑃 𝜇𝜈
𝑊 = 𝑖

−𝑔𝜇𝜈 + 𝑞𝜇𝑞𝜈

𝑚2
𝑊

𝑞2 − 𝑚2
𝑊 + 𝑖𝜖

(3.4)

is the 𝑊 boson propagator. At supernova energies (∼10 MeV), the square of the momen-

tum transfer 𝑞2 is small, i.e., 𝑞2 ≪ 𝑚2
𝑊, and we may therefore approximate the propagator

by its low-energy limit:

𝑃 𝜇𝜈
𝑊 ≈ 𝑖 𝑔𝜇𝜈

𝑚2
𝑊

. (3.5)

Under this approximation, the diagram shown in eq. (3.3) becomes

𝑖ℳ =

𝜈ℓ

ℓ− 𝑢

𝑑

= −𝑖 𝐺𝐹 𝑉𝑢𝑑√
2

ℓ𝜇 �̄�𝑢(𝑝𝑢)𝛾𝜇(1 − 𝛾5)𝑢𝑑(𝑝𝑑), (3.6)

where the Fermi constant 𝐺𝐹 is given by

𝐺𝐹√
2

= 𝑔2

8𝑚2
𝑊

, (3.7)

and the leptonic matrix element ℓ𝜇 is defined as

ℓ𝜇 = �̄�ℓ(𝑝ℓ)𝛾𝜇(1 − 𝛾5)𝑢𝜈ℓ
(𝑝𝜈ℓ

). (3.8)

In reality, the struck quark is not free, but instead is bound in a nucleon. Therefore,

the quark part of the amplitude shown above must be replaced by a suitable hadronic
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matrix element that accounts for the effects of strong interactions within the nucleon:

�̄�𝑢(𝑝𝑢)𝛾𝜇(1 − 𝛾5)𝑢𝑑(𝑝𝑑) → n𝜇 (3.9)

After making this substitution, the diagram in eq. (3.6) becomes

𝑖ℳ =

𝜈ℓ

ℓ− 𝑁𝑓

𝑁𝑖

= −𝑖 𝐺𝐹 𝑉𝑢𝑑√
2

ℓ𝜇n𝜇. (3.10)

While writing down an explicit form for the hadronic matrix element n𝜇, it will be helpful

to work in the isospin formalism, which is reviewed in section 3.2.1.

3.2.1 Isospin in nuclear physics

In the isospin formalism,9 the proton and neutron are described as two distinct states of

an abstract generic particle called the nucleon. By analogy with the quantum mechanical

description of spin-half particles, the nucleon is taken to have total isospin quantum

number 𝑡 = 1/2. The neutron is then defined by convention to be the nucleon’s “isospin

up’’ state (i.e., its third component of isospin 𝑡3 = +1/2), while the proton is defined to

be the “isospin down’’ (𝑡3 = −1/2) state.10 The components of the isospin operator 𝐭 for

isospin-half particles are defined by

𝐭 ≡ 1
2

𝝉 (3.11)

where the components of 𝝉 are given by the Pauli matrices

𝜏1 = 𝜏𝑥 = ⎛⎜
⎝

0 1

1 0
⎞⎟
⎠

𝜏2 = 𝜏𝑦 = ⎛⎜
⎝

0 −𝑖

𝑖 0
⎞⎟
⎠

𝜏3 = 𝜏𝑧 = ⎛⎜
⎝

1 0

0 −1
⎞⎟
⎠

(3.12)

9The concept of isospin was first introduced by Heisenberg [258] in 1932, although it was Wigner [259]
who coined the term “isotopic spin,’’ which was later shortened to “isospin.’’

10This is the standard sign convention in nuclear physics. Note, however, that it is exactly the opposite
of the particle physics convention in which up quarks have +1/2 as their third isospin component. The
nuclear convention arises from the desire to have a positive third component of isospin for most naturally-
occurring nuclides, which tend to have an excess of neutrons [260].
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in isospace, the Hilbert space in which isospin states are defined. In this space, nucleon

states are represented by isospinors. The two nucleon states with a definite third compo-

nent of isospin, the neutron |𝑛⟩ and proton |𝑝⟩, are described by the isospinors

|𝑛⟩ ≡ ∣1
2

1
2

⟩ = ⎛⎜
⎝

1

0
⎞⎟
⎠

|𝑝⟩ ≡ ∣1
2

−1
2

⟩ = ⎛⎜
⎝

0

1
⎞⎟
⎠

. (3.13)

Because the isospin Pauli matrices 𝜏1, 𝜏2, and 𝜏3 obey the same SU(2) Lie algebra

in isospace that the spin Pauli matrices 𝜎1, 𝜎2, and 𝜎3 obey in spin space,11 one may

immediately write down many of the properties of the isospin operators based on the

well-known spin equivalents. For instance, the 𝜏 matrices obey the commutation and

anticommutation rules

[𝜏𝑎, 𝜏𝑏] = 2𝑖𝜖𝑎𝑏𝑐𝜏𝑐 (3.14)

{𝜏𝑎, 𝜏𝑏} = 2𝛿𝑎𝑏𝐼 (3.15)

where 𝜖𝑎𝑏𝑐 is the Levi-Civita tensor, 𝛿𝑎𝑏 is the Kronecker delta, 𝐼 is the 2 × 2 identity

matrix, and the indices 𝑎, 𝑏, 𝑐 ∈ {1, 2, 3}. One may define an operator representing the

square of the magnitude of the total isospin

𝑡2 ≡ 𝐭 ⋅ 𝐭 = 𝑡2
𝑥 + 𝑡2

𝑦 + 𝑡2
𝑧 (3.16)

as well as the isospin raising and lowering operators

𝑡± ≡ 𝑡𝑥 ± 𝑖𝑡𝑦. (3.17)

These operators satisfy the commutation relations

[𝑡2, 𝑡𝑎] = 0 [𝑡3, 𝑡±] = ±𝑡± [𝑡+, 𝑡−] = 2 𝑡3. (3.18)

11The sole difference is that eigenvalues of the isospin operators do not contain factors of ℏ, even when
one works in conventional units. Although its name might suggest the contrary, isospin is dimensionless.
Apart from the isomorphism between 𝜏 and 𝜎 matrices, it has nothing to do with angular momentum.
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The isospin operators described above act on the nucleon states of definite isospin pro-

jection in the following ways:

𝑡2 |𝑛⟩ = 3
2

|𝑛⟩ 𝑡2 |𝑝⟩ = 3
2

|𝑝⟩ (3.19)

𝑡+ |𝑛⟩ = 0 𝑡+ |𝑝⟩ = |𝑛⟩ (3.20)

𝑡− |𝑛⟩ = |𝑝⟩ 𝑡− |𝑝⟩ = 0 (3.21)

𝑡3 |𝑛⟩ = 1
2

|𝑛⟩ 𝑡3 |𝑝⟩ = −1
2

|𝑝⟩ (3.22)

𝜏3 |𝑛⟩ = + |𝑛⟩ 𝜏3 |𝑝⟩ = − |𝑝⟩ . (3.23)

Note that the isospin lowering operator 𝑡− changes a neutron into a proton. This op-

erator will be important in the description of charged current neutrino-nucleus scattering

that follows. Its Hermitian conjugate 𝑡†
− = 𝑡+, which changes a proton into a neutron, will

appear in section 3.12 in the context of charged current antineutrino-nucleus scattering.

For a nucleus consisting of 𝐴 nucleons, one may define the total isospin operator 𝐓,

its third component 𝑇3, and the total isospin ladder operators 𝑇± by

𝐓 ≡
𝐴

∑
𝑘=1

𝐭(𝑘) = 1
2

𝐴

∑
𝑘=1

𝝉(𝑘), (3.24)

𝑇3 ≡
𝐴

∑
𝑘=1

𝑡3(𝑘) = 1
2

𝐴

∑
𝑘=1

𝜏3(𝑘), (3.25)

and

𝑇± ≡ 𝑇𝑥 ± 𝑖𝑇𝑦 =
𝐴

∑
𝑘=1

𝑡±(𝑘) (3.26)

where an operator 𝒪(𝑘) acts on the state vector for the 𝑘th nucleon. The action of 𝑇3 on

a nuclear state |T T3⟩ with definite total isospin T and isospin projection T3 gives

𝑇3 |T T3⟩ = T3 |T T3⟩ (3.27)

while the action of 𝑇± gives

𝑇± |T T3⟩ = √(T ∓ T3)(T ± T3 + 1) |T T3 ± 1⟩ . (3.28)
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The total isospin operators obey the commutation rules

[𝑇 2, 𝑇𝑎] = 0 [𝑇3, 𝑇±] = ±𝑇± [𝑇+, 𝑇−] = 2 𝑇3, (3.29)

where 𝑇 2 ≡ 𝐓 ⋅ 𝐓 = 𝑇 2
𝑥 + 𝑇 2

𝑦 + 𝑇 2
𝑧 and 𝑇𝑧 = 𝑇3.

Just like operators in coordinate or spin space, the isospin operators may be classified

by the way they transform under rotations in isospace. For example, the identity 𝐼 and

the square of the total isospin 𝑇 2 are isoscalar operators, while 𝑇3 is a component of an

isovector operator.

3.2.2 Four-vector expression for the free nucleon matrix element

Using Lorentz invariance, translation invariance, and parity conservation in the strong

interaction, it can be shown [49, 59] that the most general form12 of the hadronic matrix

element n𝜇 from eqs. (3.9) and (3.10) may be written for a free nucleon as:

n𝜇 = 𝜒†
𝑁𝑓

�̄�𝑁𝑓
(𝑝𝑁𝑓

)[𝛾𝜇𝐹1(𝑄2) + 𝑖
2𝑚𝑁

𝜎𝜇𝜈𝑞𝜈 𝐹2(𝑄2) + 𝑞𝜇

𝑚𝑁
𝐹3(𝑄2)

−𝛾𝜇𝛾5 𝐺𝐴(𝑄2) − 𝑞𝜇

𝑚𝑁
𝛾5 𝐺𝑃(𝑄2) + 𝑖

𝑚𝑁
𝜎𝜇𝜈𝑞𝜈 𝛾5 𝐺3(𝑄2)]𝑡− 𝑢𝑁𝑖

(𝑝𝑁𝑖
) 𝜒𝑁𝑖

. (3.30)

In the expression above, 𝑚𝑁 is the nucleon mass,13 𝑞 ≡ 𝑝𝑁𝑓
−𝑝𝑁𝑖

is the 4-momentum trans-

fer,14 𝑄2 ≡ −𝑞2, 𝑡− is the isospin lowering operator defined in eqs. (3.17) and (3.21), and

𝐹1(𝑄2), 𝐹2(𝑄2), 𝐹3(𝑄2), 𝐺𝐴(𝑄2), 𝐺𝑃(𝑄2), and 𝐺3(𝑄2) are the vector, weak magnetic

(induced tensor), induced scalar, axial-vector, induced pseudoscalar, and weak electric

(induced pseudotensor) nucleon form factors, respectively. The initial (𝑁𝑖) and final (𝑁𝑓)

nucleon states are written in terms of the Dirac spinors 𝑢𝑁(𝑝𝑁) and the isospinors 𝜒𝑁 for

𝑁 ∈ {𝑁𝑖, 𝑁𝑓}.

Before proceeding to a calculation of the amplitude for charged current neutrino scat-

tering on a full nucleus, it will be helpful to briefly review the connection between the

Lorentz invariant amplitude ℳ and the differential cross section 𝑑𝜎 for a 2→2 scattering

reaction.
12The expression in eq. (3.30) matches that of reference [59] (see their equations 5.73 and 5.74), ex-

cept that the isospin representation has been used, and the Gordon identity �̄�2(𝑝2 + 𝑝1)𝜇𝛾5𝑢1 =
−𝑖�̄�2𝜎𝜇𝜈(𝑝2 − 𝑝1)𝜈𝛾5𝑢1 has been used to rewrite the 𝐺3(𝑄2) term.

13That is, the mean of the neutron and proton masses: 𝑚𝑁 = (𝑚𝑛 + 𝑚𝑝)/2
14Our definition for the momentum transfer 𝑞 matches that of references [49, 59]. Note, however, that

the opposite subtraction order 𝑞 = 𝑝𝑁𝑖
− 𝑝𝑁𝑓

is also used in the literature, e.g., references [210, 242].
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3.3 Calculation of 2→2 scattering cross sections

Let the Lorentz-invariant amplitude ℳ describe an arbitrary reaction in which a group of

initial particles becomes a group of final particles. Let 𝑝𝑖,𝑗 represent the 4-momentum of

the 𝑗th initial particle and 𝑝𝑓,𝑘 represent the 4-momentum of the 𝑘th final particle. Then,

for a particular configuration of initial- and final-state spin orientations,15 the probability

amplitude for the reaction is given by the scattering matrix (often referred to as simply

the S-matrix) element 𝑆𝑓𝑖:

𝑆𝑓𝑖 = 𝛿𝑓𝑖 −
𝑖 ℳ (2𝜋)4 𝛿(4)(∑𝑗 𝑝𝑖,𝑗 − ∑𝑘 𝑝𝑓,𝑘)

∏𝑗 √2𝐸𝑖,𝑗 ∏𝑘 √2𝐸𝑓,𝑘
, (3.31)

where the sum ∑𝑗 (∑𝑘) and product ∏𝑗 (∏𝑘) include all particles in the initial (final)

state. The four-dimensional delta function in this expression enforces conservation of

four-momentum. The Kronecker delta function 𝛿𝑓𝑖 is unity if the initial and final states

are identical and zero otherwise. Ignoring the trivial case of identical initial and final

states, one may write the probability 𝑃𝑓𝑖 for the reaction to occur in the form

𝑃𝑓𝑖 = ∣𝑆𝑓𝑖∣
2 =

∣ℳ∣2 [(2𝜋)4 𝛿(4)(∑𝑗 𝑝𝑖,𝑗 − ∑𝑘 𝑝𝑓,𝑘)]
2

∏𝑗 2𝐸𝑖,𝑗 ∏𝑘 2𝐸𝑓,𝑘
, (3.32)

where a bar over a squared matrix element indicates that it should be averaged (summed)

over all unobserved spin orientations in the initial (final) state.

The squared delta function in eq. (3.32) may be evaluated by imagining the system of

reacting particles to be enclosed within a large but finite spacetime box [262]. The box

includes the time interval 𝑇 and the spatial volume 𝑉 = 𝐿3, where 𝐿 is the length of one

side of the box. The identity

𝛿(𝐸) = 1
2𝜋

∫ 𝑒𝑖𝐸𝑡 𝑑𝑡 (3.33)

15It is typically most convenient to specify the particle spin orientations using the helicity basis [261].
When this basis is used, the spin projection quantum number of interest for each particle is the helicity
ℎ ≡ 𝑠𝑠𝑠 ⋅ 𝐩/ |𝐩|, where 𝑠𝑠𝑠 is the particle’s spin and 𝐩 is its 3-momentum. In the rest frame of the particle,
the spin direction may be measured along an arbitrary axis.

68



implies that

[(2𝜋) 𝛿(∑
𝑗

𝐸𝑖,𝑗 − ∑
𝑘

𝐸𝑓,𝑘)]
2

= (2𝜋) 𝛿(∑
𝑗

𝐸𝑖,𝑗 − ∑
𝑘

𝐸𝑓,𝑘) ∫ 𝑒𝑖 (∑𝑗 𝐸𝑖,𝑗−∑𝑘 𝐸𝑓,𝑘) 𝑡 𝑑𝑡.

(3.34)

Because of the remaining delta function, one may set the exponent of the integrand to

zero in eq. (3.34), yielding

[(2𝜋) 𝛿(∑
𝑗

𝐸𝑖,𝑗 − ∑
𝑘

𝐸𝑓,𝑘)]
2

= 𝑇 (2𝜋) 𝛿(∑
𝑗

𝐸𝑖,𝑗 − ∑
𝑘

𝐸𝑓,𝑘) (3.35)

since

𝑇 = ∫ 𝑑𝑡 (3.36)

because the integral is evaluated only within the box. A similar argument gives us the

relation

[(2𝜋)3 𝛿(3)(∑
𝑗

𝐩𝑖,𝑗 − ∑
𝑘

𝐩𝑓,𝑘)]
2

= 𝑉 (2𝜋)3 𝛿(3)(∑
𝑗

𝐩𝑖,𝑗 − ∑
𝑘

𝐩𝑓,𝑘) (3.37)

since

𝑉 = ∫ 𝑑3𝐱 (3.38)

if, once again, the integration takes place only within the box. To ensure that the reaction

probability 𝑃𝑓𝑖 remains properly normalized, the particle wavefunctions must be normal-

ized to unity within the box. This can be accomplished by multiplying each energy factor

in eq. (3.31) by
√

𝑉. The probability for the reaction to occur within the box then may

be written as

𝑃𝑓𝑖 = ∣𝑆𝑓𝑖∣
2 =

∣ℳ∣2 𝑉 𝑇 (2𝜋)4 𝛿(4)(∑𝑗 𝑝𝑖,𝑗 − ∑𝑘 𝑝𝑓,𝑘)

∏𝑗 2𝐸𝑖,𝑗𝑉 ∏𝑘 2𝐸𝑓,𝑘𝑉
. (3.39)

Because the box has a finite size, the three-momentum 𝐩 of a particle within it is

quantized so that

𝐩 = 2𝜋
𝐿

(𝑛1 ̂𝐞𝑥 + 𝑛2 ̂𝐞𝑦 + 𝑛3 ̂𝐞𝑧) (3.40)

where the 𝑛𝑎 are integers and the ̂𝐞𝑏 are Cartesian unit vectors. Therefore, the number 𝑑𝑛

of single-particle states available within the box for a particle with 3-momentum between
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𝐩 and 𝐩 + 𝑑3𝐩 is given by

𝑑𝑛 = 𝑉
(2𝜋)3 𝑑3𝐩. (3.41)

The differential transition rate (probability per unit time) 𝑑Γ𝑓𝑖 for the reaction de-

scribed by ℳ may be written as

𝑑Γ𝑓𝑖 = 𝑇 −1 ∣𝑆𝑓𝑖∣
2 ∏

𝑘
𝑑𝑛𝑓,𝑘. (3.42)

Specializing to a scattering reaction involving two initial particles with four momenta 𝑝𝑖,1

and 𝑝𝑖,2, allows one to write the differential cross section 𝑑𝜎 for the reaction in the form

𝑑𝜎 =
𝑑Γ𝑓𝑖

𝜙
. (3.43)

Here 𝜙, the incident particle flux, may be written as [263]

𝜙 =
(𝑝𝑖,1 ⋅ 𝑝𝑖,2) 𝛽𝑖,rel

𝑉 𝐸𝑖,1𝐸𝑖,2
(3.44)

where the relative speed of the two initial particles 𝛽𝑖,rel is given in a manifestly Lorentz-

invariant form by the expression

𝛽𝑖,rel =
√(𝑝𝑖,1 ⋅ 𝑝𝑖,2)2 − 𝑚2

𝑖,1 𝑚2
𝑖,2

𝑝𝑖,1 ⋅ 𝑝𝑖,2
. (3.45)

If one further specializes to 2→2 scattering (a reaction with two initial particles and two

final particles), then these results may be combined to obtain the following expression for

the differential cross section:

𝑑𝜎 = 𝑇 −1 𝑉 𝐸𝑖,1𝐸𝑖,2

(𝑝𝑖,1 ⋅ 𝑝𝑖,2) 𝛽𝑖,rel

∣ℳ∣2 𝑉 𝑇 (2𝜋)4 𝛿(4)(∑𝑗 𝑝𝑖,𝑗 − ∑𝑘 𝑝𝑓,𝑘)

16𝑉 4 𝐸𝑖,1𝐸𝑖,2𝐸𝑓,1𝐸𝑓,2

𝑉 𝑑3𝐩𝑓,1

(2𝜋)3

𝑉 𝑑3𝐩𝑓,2

(2𝜋)3

= 1
4 (𝑝𝑖,1 ⋅ 𝑝𝑖,2) 𝛽𝑖,rel

∣ℳ∣2 (2𝜋)4 𝛿(4)(𝑝𝑖,1 + 𝑝𝑖,2 − 𝑝𝑓,1 − 𝑝𝑓,2)
𝑑3𝐩𝑓,1

(2𝜋)3 2𝐸𝑓,1

𝑑3𝐩𝑓,2

(2𝜋)3 2𝐸𝑓,2

= 𝐹 −1 ∣ℳ∣2 (2𝜋)4 𝛿(4)(𝑝𝑖,1 + 𝑝𝑖,2 − 𝑝𝑓,1 − 𝑝𝑓,2) 𝑑ΦLIPS (3.46)

where

𝐹 ≡ 4 (𝑝𝑖,1 ⋅ 𝑝𝑖,2) 𝛽𝑖,rel (3.47)
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is called the Møller flux factor and

𝑑ΦLIPS ≡
𝑑3𝐩𝑓,1

(2𝜋)3 2𝐸𝑓,1

𝑑3𝐩𝑓,2

(2𝜋)3 2𝐸𝑓,2
= ∏

𝑘

𝑑3𝐩𝑓,𝑘

(2𝜋)3 2𝐸𝑓,𝑘
(3.48)

is called the Lorentz invariant phase space.

In the case of 2→2 scattering where the helicities of all four of the involved particles are

unobserved, note that the spin-summed squared amplitude ∣ℳ∣2 introduced in eq. (3.32)

may be written as

∣ℳ∣2 ≡ 1
(2𝑠𝑖,1 + 1)(2𝑠𝑖,2 + 1)

∑
ℎ𝑖,1

∑
ℎ𝑖,2

∑
ℎ𝑓,1

∑
ℎ𝑓,2

|ℳ|2 . (3.49)

where 𝑠𝑖,1 is the spin of the first initial particle, ℎ𝑖,1 is its helicity, etc.

Because the factors of 𝑇 and 𝑉 in eq. (3.46) cancel, one may take the limits 𝑇 → ∞ and

𝑉 → ∞ at will, thus dispensing with the finite-size box enclosing the reaction. Integrating

both sides of eq. (3.46) over 𝑑3𝐩𝑓,2 is trivial because of the delta function. Doing so yields

𝑑𝜎 = 𝐹 −1 ∣ℳ∣2 (2𝜋) 𝛿(𝐸𝑖,1 + 𝐸𝑖,2 − 𝐸𝑓,1 − 𝐸𝑓,2) 1
2𝐸𝑓,2

𝑑3𝐩𝑓,1

(2𝜋)3 2𝐸𝑓,1
(3.50)

where it is understood that 3-momentum is conserved, i.e.,

𝐩𝑖,1 + 𝐩𝑖,2 − 𝐩𝑓,1 − 𝐩𝑓,2 = 0. (3.51)

Expressing 𝑑3𝐩𝑓,1 in spherical coordinates allows one to write

𝑑3𝐩𝑓,1 = ∣𝐩𝑓,1∣2 𝑑∣𝐩𝑓,1∣ 𝑑 cos 𝜃𝑓,1 𝑑𝜙𝑓,1

= ∣𝐩𝑓,1∣2 𝑑∣𝐩𝑓,1∣ 𝑑Ω𝑓,1 = ∣𝐩𝑓,1∣ 𝐸𝑓,1 𝑑𝐸𝑓,1 𝑑Ω𝑓,1. (3.52)

The relationship

𝑑𝐸𝑓,1

𝑑 ∣𝐩𝑓,1∣
= 𝑑

𝑑 ∣𝐩𝑓,1∣
√∣𝐩𝑓,1∣2 + 𝑚2

𝑓,1 =
∣𝐩𝑓,1∣

√∣𝐩𝑓,1∣2 + 𝑚2
𝑓,1

=
∣𝐩𝑓,1∣
𝐸𝑓,1

(3.53)

was used in last step of eq. (3.52). The infinitesimal solid angle element 𝑑Ω𝑓,1 is defined

by

𝑑Ω𝑓,1 ≡ sin 𝜃𝑓,1 𝑑𝜃𝑓,1 𝑑𝜙𝑓,1 = 𝑑 cos 𝜃𝑓,1 𝑑𝜙𝑓,1. (3.54)
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In eq. (3.54), 𝜃𝑓,1 denotes the polar angle and 𝜙𝑓,1 denotes the azimuthal angle. These

results may be used to rewrite eq. (3.50) as

𝑑𝜎 = 𝐹 −1 ∣ℳ∣2 (2𝜋) 𝛿(𝐸𝑖,1 + 𝐸𝑖,2 − 𝐸𝑓,1 − 𝐸𝑓,2)
∣𝐩𝑓,1∣
4𝐸𝑓,2

𝑑𝐸𝑓,1 𝑑Ω𝑓,1

(2𝜋)3 . (3.55)

Thus far, this derivation of the differential cross section 𝑑𝜎 for general 2→2 scattering

has not assumed any particular frame of reference. At this point, however, it will be

convenient to specialize to 2→2 scattering in the center-of-momentum (CM) frame, i.e.,

the frame in which

𝐩𝑖,1 = −𝐩𝑖,2. (CM frame, 3.56)

In this frame, it is straightforward to show that

𝐸𝑥,𝑗 =
𝑠 + 𝑚2

𝑗 − 𝑚2
𝑘

2
√

𝑠
𝑗, 𝑘 ∈ {1, 2}, 𝑗 ≠ 𝑘 (CM frame, 3.57)

where the subscript 𝑥 ∈ {𝑖, 𝑓} represents either the initial or final state and 𝑗, 𝑘 are the

indices of either the first or second particle in the state of interest. The Mandelstam

𝑠, the square of the total energy in the CM frame, may be written in the manifestly

Lorentz-invariant form

𝑠 = (𝑝𝑖,1 + 𝑝𝑖,2)2 = (𝑝𝑓,1 + 𝑝𝑓,2)2. (3.58)

Equation (3.57) implies that

𝐸𝑓,2 = √𝐸 2
𝑓,1 − 𝑚2

𝑓,1 + 𝑚2
𝑓,2 (CM frame, 3.59)

and therefore the delta function that appears in eq. (3.55) may be written in the CM

frame as

𝛿(𝐸𝑖,1 + 𝐸𝑖,2 − 𝐸𝑓,1 − 𝐸𝑓,2)

= 𝛿(
√

𝑠 − 𝐸𝑓,1 − √𝐸 2
𝑓,1 − 𝑚2

𝑓,1 + 𝑚2
𝑓,2)

= ⎛⎜⎜
⎝

1 +
𝐸𝑓,1

√𝐸 2
𝑓,1 − 𝑚2

𝑓,1 + 𝑚2
𝑓,2

⎞⎟⎟
⎠

−1

𝛿(𝐸𝑓,1 −
𝑠 + 𝑚2

𝑓,1 − 𝑚2
𝑓,2

2
√

𝑠
)

=
𝐸𝑓,2√

𝑠
𝛿(𝐸𝑓,1 −

𝑠 + 𝑚2
𝑓,1 − 𝑚2

𝑓,2

2
√

𝑠
) (CM frame, 3.60)
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The penultimate step above used the identity

𝛿 (𝑓(𝑥)) = ∑
𝑛

𝛿(𝑥 − 𝑥𝑛)
|𝑓 ′(𝑥𝑛)|

(3.61)

where 𝑥𝑛 is the 𝑛th root of 𝑓(𝑥). Because the delta function will enforce energy conser-

vation, the prefactor in the last step may be simplified using the result from eq. (3.57).

Substituting the final expression from eq. (3.60) into eq. (3.55) and integrating over 𝐸𝑓,1

yields

𝑑𝜎 = 𝐹 −1 ∣ℳ∣2
∣𝐩𝑓,1∣ 𝑑Ω𝑓,1

16 𝜋2√
𝑠

. (CM frame, 3.62)

In the CM frame, the Møller flux factor may be written as

𝐹 = 4 ∣𝐩𝑖,1∣
√

𝑠, (CM frame, 3.63)

which leads to the well-known result

𝑑𝜎
𝑑Ω𝑓,1

= ∣ℳ∣2 1
64 𝜋2 𝑠

∣𝐩𝑓,1∣
∣𝐩𝑖,1∣

. (CM frame, 3.64)

If the Lorentz-invariant amplitude has no dependence on the azimuthal angle16 𝜙𝑓,1, then

one may integrate both sides of eq. (3.64) over 𝜙𝑓,1 ∈ [0, 2𝜋) to obtain

𝑑𝜎
𝑑 cos 𝜃𝑓,1

=
∣ℳ∣2

32 𝜋 𝑠
∣𝐩𝑓,1∣
∣𝐩𝑖,1∣

. (CM frame, 3.65)

This expression will be used to calculate a differential cross section for charged current

neutrino-nucleus scattering in section 3.11.

Before examining the free nucleon matrix element n𝜇 in the next section, we will pause

to derive one additional result that will prove useful while discussing the transition from

neutrino-nucleon to neutrino-nucleus scattering.

Consider the Fourier transform 𝑀 of the Lorentz invariant amplitude, which is given

by

𝑀 ≡ ∫ 𝑒𝑖(∑𝑗 𝐩𝑖,𝑗−∑𝑘 𝐩𝑓,𝑘)⋅𝐱 ℳ 𝑑3𝐱. (3.66)

16This will be the case for all cross sections that are examined in this thesis.
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Recall that, in the context of eq. (3.50) through the end of this section, 3-momentum

conservation has been enforced by integrating over the spatial delta functions in the S-

matrix element. Therefore

∑
𝑗

𝐩𝑖,𝑗 − ∑
𝑘

𝐩𝑓,𝑘 = 𝟎. (3.67)

With that understanding, the definition of 𝑀 from eq. (3.66) may be used to write

𝑀 = ∫ 𝑒𝑖 (𝟎)⋅𝐱 ℳ 𝑑3𝐱 = ℳ∫ 𝑑3𝐱 = 𝑉 ℳ. (3-momentum conserved, 3.68)

In the penultimate step above, we have noted that, since the Lorentz-invariant amplitude

ℳ is evaluated in momentum space, it depends on the particle momenta but not on their

positions. It may therefore be moved outside of the integral over the spatial coordinates.

Equation (3.68) will be used to relate ℳ to the position-space nucleon wavefunctions in

section 3.4.

3.4 Free nucleon matrix element calculation

At the energy scale of interest for this calculation (∼10 MeV), the wavefunctions describ-

ing individual nucleons within the target nucleus are typically expressed nonrelativistically

using two-component Pauli spinors. This is inconvenient because the relativistic expres-

sion for the free-nucleon matrix element n𝜇 (see eq. (3.30)) uses 4-component Lorentz

spinors.

To resolve this mismatch, one may evaluate n𝜇 using an explicit representation of the

gamma matrices and the Lorentz spinors. Doing so will yield an expression involving

Pauli spin matrices and two-component nucleon spinors.

In the Dirac representation, the gamma matrices may be written in 2×2 block form

as

𝛾0 = ⎛⎜
⎝

1 0

0 −1
⎞⎟
⎠

(3.69)

𝛾𝑗 = ⎛⎜
⎝

0 𝜎𝑗

−𝜎𝑗 0
⎞⎟
⎠

𝑗 ∈ {1, 2, 3} (3.70)
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𝛾5 ≡ 𝑖𝛾0𝛾1𝛾2𝛾3 = ⎛⎜
⎝

0 1

1 0
⎞⎟
⎠

. (3.71)

The Dirac spinor 𝑢𝑁(𝑝𝑁) for a free nucleon 𝑁 is written in this representation as

𝑢𝑁(𝑝𝑁) = √𝐸𝑁 + 𝑚𝑁
⎛⎜
⎝

𝜉𝑁
(𝐩𝑁⋅𝝈)

𝐸𝑁+𝑚𝑁
𝜉𝑁

⎞⎟
⎠

= √2𝐸𝑁 √𝐸𝑁 + 𝑚𝑁
2𝐸𝑁

⎛⎜
⎝

1
(𝐩𝑁⋅𝝈)

𝐸𝑁+𝑚𝑁

⎞⎟
⎠

𝜉𝑁, (3.72)

where 𝜉𝑁 is a two-component Pauli spinor. In the last step above, a factor of √2𝐸𝑁 has

been extracted from the overall normalization constant for later convenience. Note that,

with the normalization chosen in eq. (3.72) for the Dirac spinors,

𝑢(𝑝𝑁)†𝑢(𝑝𝑁) = 2𝐸𝑁 𝜉†
𝑁 𝜉𝑁 (3.73)

and

∑
𝑠=↓,↑

�̄�(𝑠)(𝑝𝑁) 𝑢(𝑠)(𝑝𝑁) = �𝑝𝑁 + 𝑚𝑁 = 𝛾𝜇 𝑝𝜇
𝑁 + 𝑚𝑁, (3.74)

where the sum is over the nucleon’s two possible spin orientations. By plugging the

explicit matrix representations above into eq. (3.30), one finds that the four components

of the nucleon matrix element are given by

n0 = (√2𝐸𝑁𝑖√2𝐸𝑁𝑓
) 𝜉†

𝑁𝑓
𝜒†

𝑁𝑓
j0 𝜉𝑁𝑖

𝜒𝑁𝑖
(3.75)

n𝑏 = (√2𝐸𝑁𝑖√2𝐸𝑁𝑓
) 𝜉†

𝑁𝑓
𝜒†

𝑁𝑓
j𝑏 𝜉𝑁𝑖

𝜒𝑁𝑖
𝑏 ∈ {1, 2, 3} . (3.76)

In the equations above, the free nucleon transition operator j𝜇 has the time component

j0 = (√
𝐸𝑁𝑖

+ 𝑚𝑁

2𝐸𝑁𝑖

√√√
⎷

𝐸𝑁𝑖
+ 𝑚𝑁 + 𝑞0

2 (𝐸𝑁𝑖
+ 𝑞0)

)(𝐹1(𝑄2) − (𝐪 ⋅ 𝝈)
𝑚𝑁

𝐺3(𝑄2) + 𝑞0

𝑚𝑁
𝐹3(𝑄2)

+
(𝐩𝑁𝑖

+ 𝐪) ⋅ 𝝈
𝐸𝑁𝑖

+ 𝑚𝑁 + 𝑞0 [ 𝐪 ⋅ 𝝈
2 𝑚𝑁

𝐹2(𝑄2) − 𝑞0

𝑚𝑁
𝐹3(𝑄2) − 𝐺𝐴(𝑄2) + 𝑞0

𝑚𝑁
𝐺𝑃(𝑄2)]

+ [ 𝑞0

𝑚𝑁
𝐹3(𝑄2) − 𝐪 ⋅ 𝝈

2 𝑚𝑁
𝐹2(𝑄2) − 𝐺𝐴(𝑄2) − 𝑞0

𝑚𝑁
𝐺𝑃(𝑄2)]

𝐩𝑁𝑖
⋅ 𝝈

𝐸𝑁𝑖
+ 𝑚𝑁

+
(𝐩𝑁𝑖

+ 𝐪) ⋅ 𝝈
𝐸𝑁𝑖

+ 𝑚𝑁 + 𝑞0 [𝐹1(𝑄2) + 𝐪 ⋅ 𝝈
𝑚𝑁

𝐺3(𝑄2) − 𝑞0

𝑚𝑁
𝐹3(𝑄2)]

𝐩𝑁𝑖
⋅ 𝝈

𝐸𝑁𝑖
+ 𝑚𝑁

)𝑡−

(3.77)
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and the spatial components

j𝑏 =(√
𝐸𝑁𝑖

+ 𝑚𝑁

2𝐸𝑁𝑖

√√√
⎷

𝐸𝑁𝑖
+ 𝑚𝑁 + 𝑞0

2 (𝐸𝑁𝑖
+ 𝑞0)

)( − 𝜎𝑏 𝐺𝐴(𝑄2) + 𝑞𝑏

𝑚𝑁
𝐹3(𝑄2) + 𝑞0𝜎𝑏

𝑚𝑁
𝐺3(𝑄2)

− 𝑖(𝝈 × 𝐪)𝑏

2 𝑚𝑁
𝐹2(𝑄2) +

(𝐩𝑁𝑖
+ 𝐪) ⋅ 𝝈

𝐸𝑁𝑖
+ 𝑚𝑁 + 𝑞0 [ 𝑞𝑏

𝑚𝑁
(𝐺𝑃(𝑄2) − 𝐹3(𝑄2)) + 𝜎𝑏 𝐹1(𝑄2)

− 𝑞0𝜎𝑏

2 𝑚𝑁
𝐹2(𝑄2) + 𝑖(𝝈 × 𝐪)𝑏

𝑚𝑁
𝐺3(𝑄2)] + [𝜎𝑏 𝐹1(𝑄2) + 𝑞0𝜎𝑏

2 𝑚𝑁
𝐹2(𝑄2)

+ 𝑞𝑏

𝑚𝑁
(𝐹3(𝑄2) − 𝐺𝑃(𝑄2)) − 𝑖(𝝈 × 𝐪)𝑏

𝑚𝑁
𝐺3(𝑄2)]

𝐩𝑁𝑖
⋅ 𝝈

𝐸𝑁𝑖
+ 𝑚𝑁

+
(𝐩𝑁𝑖

+ 𝐪) ⋅ 𝝈
𝐸𝑁𝑖

+ 𝑚𝑁 + 𝑞0 [𝑖(𝝈 × 𝐪)𝑏

2 𝑚𝑁
𝐹2(𝑄2) − 𝑞𝑏

𝑚𝑁
𝐹3(𝑄2)

− 𝜎𝑏 𝐺𝐴(𝑄2) − 𝑞0𝜎𝑏

𝑚𝑁
𝐺3(𝑄2)]

𝐩𝑁𝑖
⋅ 𝝈

𝐸𝑁𝑖
+ 𝑚𝑁

)𝑡−. (3.78)

Here (𝝈 × 𝐪)𝑏 is the 𝑏th component of the cross product of 𝝈 and 𝐪, e.g., in Cartesian

coordinates

(𝝈 × 𝐪)1 = 𝜎2𝑞3 − 𝜎3𝑞2. (3.79)

In the expressions above, the relations

𝐸𝑁𝑓
= 𝐸𝑁𝑖

+ 𝑞0 (3.80)

and

𝐩𝑁𝑓
= 𝐩𝑁𝑖

+ 𝐪 (3.81)

have been used to write the expressions in terms of the momentum transfer four-vector

𝑞𝜇 ≡ 𝑝𝜇
𝑁𝑓

− 𝑝𝜇
𝑁𝑖

and the initial nucleon energy 𝐸𝑁𝑖
and momentum 𝐩𝑁𝑖

.

Now consider the Fourier transform 𝑀 of the Lorentz invariant matrix element ℳ for

charged current neutrino-nucleon scattering. Equations (3.10) and (3.66) show that it is
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given by

𝑀 = ∫ 𝑑3𝐱 𝑒𝑖 (𝐩𝜈ℓ
+𝐩𝑁𝑖−𝐩ℓ−𝐩𝑁𝑓

)⋅𝐱ℳ

= −𝐺𝐹 𝑉𝑢𝑑√
2

ℓ𝜇 ∫ 𝑑3𝐱 𝑒−𝑖𝐩𝑁𝑓
⋅𝐱 𝑒𝑖𝐪⋅𝐱 𝑛𝜇 𝑒𝑖𝐩𝑁𝑖 ⋅𝐱. (3.82)

In the second step, 3-momentum conservation has been invoked to determine that

𝐪 ≡ 𝐩𝑁𝑓
− 𝐩𝑁𝑖

= 𝐩𝜈ℓ
− 𝐩ℓ. (3.83)

Referring to eqs. (3.75) and (3.76) allows one to see that the integrand above may be

written as

𝑒−𝑖𝐩𝑁𝑓
⋅𝐱 𝑒𝑖𝐪⋅𝐱 𝑛𝜇 𝑒𝑖𝐩𝑁𝑖 ⋅𝐱

= √2𝐸𝑁𝑖√2𝐸𝑁𝑓
𝜉†

𝑁𝑓
𝜒†

𝑁𝑓
𝑒−𝑖𝐩𝑁𝑓

⋅𝐱 𝑒𝑖𝐪⋅𝐱 j𝜇 𝜉𝑁𝑖
𝜒𝑁𝑖

𝑒𝑖𝐩𝑁𝑖 ⋅𝐱

= 𝑉 √2𝐸𝑁𝑖√2𝐸𝑁𝑓
( 1√

𝑉
𝜉†

𝑁𝑓
𝜒†

𝑁𝑓
𝑒−𝑖𝐩𝑁𝑓

⋅𝐱) 𝑒𝑖𝐪⋅𝐱 j𝜇 ( 1√
𝑉

𝜉𝑁𝑖
𝜒𝑁𝑖

𝑒𝑖𝐩𝑁𝑖 ⋅𝐱) . (3.84)

Recognizing the quantities in parentheses as the nonrelativistic position-space wavefunc-

tions (including the spin and isospin dependence) for a free nucleon in the final and initial

states allows one to cast eq. (3.82) in the form

𝑀 = −𝑉 𝐺𝐹 𝑉𝑢𝑑√
2

√2𝐸𝑁𝑖√2𝐸𝑁𝑓
ℓ𝜇 ⟨𝑁𝑓∣ ̂𝒪𝜇 |𝑁𝑖⟩ . (3.85)

Here the position-space free nucleon transition operator

̂𝒪𝜇 ≡ 𝑒𝑖𝐪⋅𝐱 ̂j𝜇 (3.86)

is marked with a hat to indicate that the 4-momenta 𝑝𝑁𝑖
and 𝑞 = 𝑝𝑁𝑓

− 𝑝𝑁𝑖
appearing in

eqs. (3.77) and (3.78) should now be interpreted as operators acting on the position-space

wavefunctions17 for the initial and final nucleon states. Explicitly, we have

𝐩𝑁𝑖
= −𝑖∇𝑖 (3.87)

17The momentum operators should not, however, act on the factor of 𝑒𝑖𝐪⋅𝐱 that appears in the definition
of ̂𝒪𝜇.
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where the 𝑖 in the coefficient is the imaginary unit, while the 𝑖 in the subscript indicates

that the operator acts on the initial nucleon wavefunction,

𝐩𝑁𝑓
= −𝑖∇𝑓, (3.88)

𝐪 = 𝐩𝑁𝑓
− 𝐩𝑁𝑖

= −𝑖 (∇𝑓 − ∇𝑖) , (3.89)

and, for nonrelativistic free nucleons,

𝑞0 =
𝐩2

𝑁𝑓
− 𝐩2

𝑁𝑖

2𝑚𝑁
=

∇2
𝑖 − ∇2

𝑓

2𝑚𝑁
. (3.90)

Because the wavefunctions describing the free nucleon states are simple plane waves 𝑒𝑖𝐩⋅𝐱

with definite momenta, replacing these operators with their eigenvalues will yield identical

results at this point in the derivation. The distinction becomes important in section 3.5

during the transition from neutrino-nucleon to neutrino-nucleus scattering.

Note that the nonrelativistic nucleon wavefunctions are normalized to unity:

⟨𝑁|𝑁⟩ = ∫ ( 1√
𝑉

𝜉†
𝑁 𝜒†

𝑁 𝑒−𝑖𝐩𝑁⋅𝐱)( 1√
𝑉

𝜉𝑁 𝜒𝑁 𝑒𝑖𝐩𝑁⋅𝐱) 𝑑3𝐱

= 𝜉†
𝑁 𝜉𝑁 𝜒†

𝑁 𝜒𝑁 𝑉 −1∫ 𝑑3𝐱 = 1. (3.91)

It follows from 3-momentum conservation (which will be explicitly enforced in any

cross section calculation) and eqs. (3.68) and (3.85) that

ℳ = −𝐺𝐹 𝑉𝑢𝑑√
2

√2𝐸𝑁𝑖√2𝐸𝑁𝑓
ℓ𝜇 ⟨𝑁𝑓∣ ̂𝒪𝜇 |𝑁𝑖⟩ . (3.92)

From this result and eq. (3.10), it also follows that

n𝜇 = √2𝐸𝑁𝑖√2𝐸𝑁𝑓
⟨𝑁𝑓∣ ̂𝒪𝜇 |𝑁𝑖⟩ . (3.93)

3.5 Transition to neutrino-nucleus scattering

To further generalize to charged current neutrino scattering on a nucleus instead of a single

nucleon, the free nucleon matrix element n𝜇 must be replaced with a nuclear matrix ele-

ment 𝒩𝜇 representing the contributions of all nucleons to the amplitude. Equation (3.93)
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makes it easy to anticipate the needed expression for the nuclear matrix element:

𝒩𝜇 ≡ √2𝐸𝑖 √2𝐸𝑓 ⟨𝑓 ∣�̂�𝜇∣ 𝑖⟩ = √2𝐸𝑖 √2𝐸𝑓 ⟨𝐽𝑓 𝑀𝑓 ∣�̂�𝜇∣ 𝐽𝑖 𝑀𝑖⟩ (3.94)

n𝜇 → 𝒩𝜇

In the second expression above for 𝒩𝜇, the initial (𝑖) and final (𝑓) nuclear states are

labeled with quantum numbers representing the total spin 𝐽 and the helicity 𝑀. The

other quantum numbers needed to fully specify these states (e.g., the total isospin 𝑇)

will not be referred to explicitly in the following discussion. Like the free nucleon state

vectors in eq. (3.85), the nuclear state vectors represent nonrelativistic position-space

wavefunctions normalized to unity:

⟨𝑖|𝑖⟩ = ⟨𝑓|𝑓⟩ = 1.

Substituting the full nuclear matrix element 𝒩𝜇 into eq. (3.10) yields the diagram

𝑖ℳ =

𝜈ℓ

ℓ− 𝐴
𝑍+1Y

𝐴
𝑍X

= −𝑖 𝐺𝐹 𝑉𝑢𝑑√
2

ℓ𝜇 𝒩𝜇. (3.95)

To calculate the nuclear matrix element 𝒩𝜇, we rely on the impulse approximation,

in which the target nucleus is seen as a collection of individual nucleons. Under this

approximation, the nuclear current operator �̂�𝜇 may be written as the sum of single-

nucleon contributions, i.e.,

�̂�𝜇 ≈
𝐴

∑
𝑘=1

̂𝒪𝜇(𝑘) =
𝐴

∑
𝑘=1

𝑒𝑖𝐪⋅𝐱𝑘 ̂j𝜇(𝑘) (3.96)

= ∑
𝑁𝑓

∑
𝑁𝑖

⟨𝑁𝑓 ∣ ̂𝒪𝜇∣ 𝑁𝑖⟩ 𝑎†
𝑁𝑓

𝑎𝑁𝑖
(3.97)

where the first line gives the position-space representation, and the second gives the

equivalent occupation number representation [260]. Here, the sums over 𝑁𝑖 and 𝑁𝑓 include
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complete sets of single-nucleon states, the single-nucleon operator ̂𝒪𝜇(𝑘) acts on the 𝑘th

nucleon’s state vector, and 𝑎†
𝑁 (𝑎𝑁) creates (destroys) a nucleon in the state 𝑁. In

diagrammatic form, this approximation may be stated as

𝒩𝜇 =

𝐴
𝑍+1Y

𝐴
𝑍X

≈
𝐴

∑
𝑘=1

𝐴
𝑍+1Y

⏟
𝑘th nucleon

interacts

…

⏟⏟⏟⏟⏟
𝐴 − 1 nucleons
are spectators

𝐴
𝑍X

. (3.98)

Although a naïve application of the impulse approximation would treat the nucleons as

fully noninteracting, such an approach would be far from satisfactory, as they are subject

to strong interactions within the nuclear environment. A standard way of correcting

the impulse approximation to account for the internucleon forces is to use the position-

space free nucleon transition operator ̂𝒪𝜇(𝑘) together with bound nucleon wavefunctions

calculated using a suitable model for the nuclear potential. In this way, nuclear effects

may be taken into account while still neglecting the two-, three-, and many-body terms

that are ignored in the impulse approximation’s simple sum over individual nucleons [264].

When applying the operator 𝑞0 to bound nucleon wavefunctions, however, because

the nucleons are off their mass shell,18 it becomes unclear [231] whether one should use

nucleon kinematics (the operator definition in eq. (3.90)) or lepton kinematics, i.e., the

non-operator value

𝑞0 = 𝐸𝜈ℓ
− 𝐸ℓ (3.99)

known from the leptonic part of the problem via conservation of energy. For the present

calculation, we will choose to use lepton kinematics, noting that differences between ob-

18A nucleon with total energy 𝐸𝑁 and 3-momentum 𝐩𝑁 is considered off-shell if 𝐸𝑁 ≠ √|𝐩𝑁|2 − 𝑚2
𝑁.

The inequality holds for bound nucleons due to the presence of the nuclear potential.
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servables calculated using the two approaches are typically small [231]. The initial nucleon

momentum will continue to be treated as an operator (see eq. (3.87)).

It should be pointed out that, as long as plane-wave wavefunctions are used for the

initial and final leptons, there is no similar nucleon vs. lepton kinematics ambiguity for

the 3-momentum transfer 𝐪. This is because, when choosing to work with nucleon kine-

matics, one may use partial integration to move the gradient operators from the nucleon

wavefunctions to the lepton wavefunctions, yielding a result for the 3-momentum transfer

that is identical to its value under lepton kinematics [231].

As discussed in section 3.3, to determine the differential cross section for charged cur-

rent neutrino-nucleus scattering, one must evaluate the absolute square of the amplitude

ℳ, summing or averaging over unobserved spins (helicities) as appropriate. Because only

left-handed neutrinos (and right-handed antineutrinos) participate in weak interactions,

and because neutrinos are approximated as massless in the Standard Model, the neutrino

helicity is known a priori. An average should not, therefore, be computed for the initial

neutrino spin orientations, although one is free to sum over them since the projection op-

erator 1 − 𝛾5 that appears in ℓ𝜇 will ensure that only contributions from the appropriate

helicity state survive. Averaging over the unknown initial nuclear spin and summing over

the final particle spins gives

∣ℳ∣2 = 𝐺𝐹
2 |𝑉𝑢𝑑|2

2𝐽𝑖 + 1
∑
𝑀𝑖

∑
𝑀𝑓

𝒩𝜇 𝒩𝜈∗ L𝜇𝜈 = 4𝐸𝑖𝐸𝑓
𝐺𝐹

2 |𝑉𝑢𝑑|2

2𝐽𝑖 + 1
∣𝒯𝑓𝑖∣

2 . (3.100)

Here the lepton tensor L𝜇𝜈 for the neutrino charged current interaction has been defined

by

L𝜇𝜈 ≡ 1
2

∑
ℎ𝜈ℓ

∑
ℎℓ

ℓ𝜇 ℓ∗
𝜈 (3.101)

where ℎ𝜈ℓ
is the neutrino helicity, ℎℓ is the same for the charged lepton, and the factor

of 1/2 comes from the absolute square of the coupling constant factor 𝐺𝐹𝑉𝑢𝑑/
√

2 that

appears in eq. (3.95), not an average over the incident neutrino helicities, as discussed

above. The quantity ∣𝒯𝑓𝑖∣
2 is defined by

∣𝒯𝑓𝑖∣
2 ≡ ∑

𝑀𝑖

∑
𝑀𝑓

𝑂𝜇 𝑂𝜈∗ L𝜇𝜈, (3.102)
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where

𝑂𝜇 ≡ ⟨𝐽𝑓 𝑀𝑓∣ �̂�𝜇 ∣𝐽𝑖 𝑀𝑓⟩ = (2𝐸𝑖)
−1/2 (2𝐸𝑓)−1/2 𝒩𝜇. (3.103)

3.6 Charged current lepton tensor

The lepton tensor L𝜇𝜈 defined in eq. (3.101) may expressed in terms of the four-momenta

of the neutrino (𝑝𝜇
𝜈ℓ

) and charged lepton (𝑝𝜇
ℓ ) as

L𝜇𝜈 = 4 [𝑝ℓ,𝜇 𝑝𝜈ℓ,𝜈 + 𝑝ℓ,𝜈 𝑝𝜈ℓ,𝜇 − 𝑔𝜇𝜈 (𝑝ℓ ⋅ 𝑝𝜈ℓ
) − 𝑖𝜖𝜇𝜈𝜌𝜎 𝑝𝜌

ℓ 𝑝𝜎
𝜈ℓ

] . (3.104)

Equation (3.104) provides an expression for the lepton tensor in terms of Cartesian com-

ponents of the four-vectors, i.e., 𝜇, 𝜈 ∈ {0, 1, 2, 3}, with

𝑝ℓ,0 = 𝑝ℓ,𝑡 = 𝐸ℓ 𝑝𝜈ℓ,0 = 𝑝𝜈ℓ,𝑡 = 𝐸𝜈ℓ

𝑝ℓ,1 = 𝑝ℓ,𝑥 𝑝𝜈ℓ,1 = 𝑝𝜈ℓ,𝑥

𝑝ℓ,2 = 𝑝ℓ,𝑦 𝑝𝜈ℓ,2 = 𝑝𝜈ℓ,𝑦

𝑝ℓ,3 = 𝑝ℓ,𝑧 𝑝𝜈ℓ,3 = 𝑝𝜈ℓ,𝑧. (3.105)

In this basis the metric tensor19 𝑔𝜇𝜈 is given by

𝑔𝜇𝜈 = 𝛿𝜇0𝛿𝜈0 − 𝛿𝜇1𝛿𝜈1 − 𝛿𝜇2𝛿𝜈2 − 𝛿𝜇3𝛿𝜈3 =

𝜈=0 𝜈=1 𝜈=2 𝜈=3

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1 0 0 0 𝜇=0

0 −1 0 0 𝜇=1

0 0 −1 0 𝜇=2

0 0 0 −1 𝜇=3

, (3.106)

where the Kronecker delta 𝛿𝜇𝜈 is defined by

𝛿𝜇𝜈 =
⎧{
⎨{⎩

0 𝜇 ≠ 𝜈

1 𝜇 = 𝜈
. (3.107)

In section 3.8, it will be convenient to work in spherical coordinates. In anticipation of

those future calculations, this section will provide expressions for the spherical components
19The “West Coast’’ sign convention (+ − −−) for the Cartesian metric is used throughout this thesis.

82



of the lepton tensor L. To determine these expressions, first define the spherical unit

vectors20

̂𝐞
�0

≡ ̂𝐞𝑡 ̂𝐞0 ≡ ̂𝐞𝑧 ̂𝐞±1 ≡ ∓ 1√
2

( ̂𝐞𝑥 ± 𝑖 ̂𝐞𝑦) (3.108)

where { ̂𝐞𝑡, ̂𝐞𝑥, ̂𝐞𝑦, ̂𝐞𝑧} is the standard orthonormal Cartesian basis for four-vectors. Then

the set { ̂𝐞
�0
, ̂𝐞−1, ̂𝐞0, ̂𝐞1} is an orthonormal basis for four-vectors with metric tensor

𝑔𝜇𝜈 = 𝛿𝜇�0
𝛿𝜈�0

+𝛿𝜇,−1𝛿𝜈1−𝛿𝜇0𝛿𝜈0+𝛿𝜇1𝛿𝜈,−1 =

𝜈=�0 𝜈=-1 𝜈=0 𝜈=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1 0 0 0 𝜇=�0

0 0 0 1 𝜇=-1

0 0 −1 0 𝜇=0

0 1 0 0 𝜇=1

= 𝑔𝜇𝜈. (3.109)

In this basis, the dot product of two four-vectors 𝐴𝜇 and 𝐵𝜇 may be written as

𝐴 ⋅ 𝐵 = 𝐴𝜇𝐵𝜇 = 𝑔𝜇𝜈𝐴𝜈𝐵𝜇 = 𝐴
�0
𝐵
�0

+ 𝐴−1𝐵1 − 𝐴0𝐵0 + 𝐴1𝐵−1

= 𝐴
�0
𝐵
�0

− ∑
𝑀

(−1)𝑀𝐴𝑀𝐵−𝑀

= 𝐴
�0
𝐵
�0

− 𝐴𝑀 𝐵𝑀 = 𝐴
�0
𝐵
�0

− 𝐀 ⋅ 𝐁, (3.110)

where the explicit sum is over 𝑀 ∈ {−1, 0, 1}. The definitions of the spherical basis

vectors given in eq. (3.108) imply that the Cartesian components of an arbitrary four-

vector 𝐴𝜇 may be written in terms of the spherical components via the relations

𝐴𝑡 = 𝐴
�0

𝐴𝑥 = 1√
2

(𝐴−1 − 𝐴1) 𝐴𝑦 = 𝑖√
2

(𝐴−1 + 𝐴1) 𝐴𝑧 = 𝐴0. (3.111)

Likewise, the spherical components may be written in terms of the Cartesian components

via

𝐴
�0

= 𝐴𝑡 𝐴0 = 𝐴𝑧 𝐴±1 = ∓ 1√
2

(𝐴𝑥 ± 𝑖 𝐴𝑦) . (3.112)

Recall the definition of L in eq. (3.101), and consider as an example the spherical

component

L
�01 = 1

2
∑
𝑚𝜈ℓ

∑
𝑚ℓ

ℓ
�0

ℓ∗
1. (3.113)

20The time index in the spherical basis is denoted by �0. This notation is due to Krmpotić et al. [242].
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The substitutions shown in eq. (3.112) allow one to rewrite the right-hand side of eq. (3.113)

in terms of the Cartesian components of ℓ𝜇, to wit:

L01 = 1
2

∑
𝑚𝜈ℓ

∑
𝑚ℓ

ℓ𝑧 (− 1√
2

[ℓ𝑥 + 𝑖 ℓ𝑦])
∗

= − 1√
2

[1
2

∑
𝑚𝜈ℓ

∑
𝑚ℓ

(ℓ𝑧 ℓ∗
𝑥 − 𝑖 ℓ𝑧 ℓ∗

𝑦)]

= 1√
2

(𝑖 L𝑧𝑦 − L𝑧𝑥) . (3.114)

Substituting the explicit Cartesian expressions from eq. (3.104) into the equation above

gives

L01 = 2
√

2 [(𝑝ℓ,𝑥 − 𝑖 𝑝ℓ,𝑦) (𝑝𝜈ℓ,𝑡 − 𝑝𝜈ℓ,𝑧) − (𝑝ℓ,𝑡 + 𝑝ℓ,𝑧) (𝑝𝜈ℓ,𝑥 + 𝑖 𝑝𝜈ℓ,𝑦)] . (3.115)

Using eq. (3.111), this expression may in turn be rewritten in terms of the spherical

components of 𝑝ℓ and 𝑝𝜈ℓ
, yielding

L01 = 4 (𝑝ℓ,−1 𝑝𝜈ℓ,�0
− 𝑝ℓ,�0

𝑝𝜈ℓ,−1 − 𝑝ℓ,0 𝑝𝜈ℓ,−1 − 𝑝ℓ,−1 𝑝𝜈ℓ,0)

= 4 (𝑝ℓ,�0
𝑝∗

𝜈ℓ,1 − 𝑝∗
ℓ,1 𝑝𝜈ℓ,�0

+ 𝑝ℓ,0 𝑝∗
𝜈ℓ,1 + 𝑝∗

ℓ,1 𝑝𝜈ℓ,0) . (3.116)

The identity

𝐴±1 = −𝐴∗
∓1 𝐴𝑥, 𝐴𝑦 ∈ ℝ (3.117)

was used to obtain the second line above. It applies because the Cartesian components

of the four-momenta 𝑝ℓ and 𝑝𝜈ℓ
are real.

A similar procedure can be applied to obtain the following expressions [242] for all of

the spherical components of L:

L
�0�0

= 4 (𝐸ℓ 𝐸𝜈ℓ
+ 𝑝𝑀

ℓ 𝑝𝜈ℓ,𝑀) = 4 (𝐸ℓ 𝐸𝜈ℓ
+ 𝐩ℓ ⋅ 𝐩𝜈ℓ

) (3.118)

L𝑀�0
= 4 (𝐸ℓ 𝑝𝜈ℓ,𝑀 + 𝐸𝜈ℓ

𝑝ℓ,𝑀 + 𝑖 [𝐩ℓ × 𝐩𝜈ℓ
]
𝑀

) = L∗
�0𝑀 (3.119)

L𝑀𝑁 = 4[𝛿𝑀𝑁 (𝑝ℓ ⋅ 𝑝𝜈ℓ
) + 𝑝ℓ,𝑀 𝑝∗

𝜈ℓ,𝑁 + 𝑝∗
ℓ,𝑁 𝑝𝜈ℓ,𝑀

+ 𝐾𝑀𝑁 (𝐸ℓ 𝑝∗
𝜈ℓ,𝑁−𝑀 − 𝐸𝜈ℓ

𝑝∗
ℓ,𝑁−𝑀) ]. (3.120)
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The symbol 𝐾𝑀𝑁 (which appears in eq. (3.120)) is defined by

𝐾𝑀𝑁 ≡
√

6 (−1)𝑁+1 ⎛⎜
⎝

1 1 1

−𝑁 𝑀 𝑁 − 𝑀
⎞⎟
⎠

=

𝑁=-1 𝑁=0 𝑁=1

⎛⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟
⎠

1 1 0 𝑀=-1

−1 0 1 𝑀=0

0 −1 −1 𝑀=1

, (3.121)

where the first definition is given in terms of the Wigner 3-j symbol and the second uses

an ordinary matrix.

3.7 Charged current nucleon form factors

The form factors 𝐹1(𝑄2), 𝐺𝐴(𝑄2), etc. that appear in eqs. (3.30), (3.77) and (3.78)

represent corrections to the free nucleon current that arise because the nucleon has a

finite spatial extent rather than being pointlike. Factorizing scattering amplitudes into a

value for a pointlike target and a form factor that corrects for a nonzero target size is a

common technique in both classical and quantum mechanical scattering problems [265].

In the case of the nucleon form factors of interest for charged current neutrino scatter-

ing, it can be shown [59] that, in the limit of perfect isospin invariance,21 the form factors

associated with second-class currents22 must vanish:

𝐹3(𝑄2) ≈ 0 𝐺3(𝑄2) ≈ 0. (3.122)

Experimental searches for these second-class currents have confirmed their absence at the

level of about 5–10% of weak magnetism (the 𝐹2(𝑄2) term) [268]. The remaining vector

current form factors 𝐹1(𝑄2) and 𝐹2(𝑄2) have been measured using electron scattering

experiments (see reference [269] for a detailed review).

Measurements of the axial-vector current form factors 𝐺𝐴(𝑄2) and 𝐺𝑃(𝑄2) are more

limited [270, 271]. Current experimental knowledge of the axial-vector form factor 𝐺𝐴(𝑄2)
21Isospin is an approximate symmetry. Corrections for imperfect isospin invariance are of order Δ/𝑚𝑁,

where Δ = 𝑚𝑛 − 𝑚𝑝 is the difference between the neutron and proton masses [266].
22This classification is due to Weinberg [267] and refers to the G-parity of the current. The first-

class vector currents have G-parity +1, and the first-class axial-vector currents have G-parity −1. The
second-class currents have opposite signs for their G-parity eigenvalues.
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comes from neutron beta decay, neutrino scattering, pion electroproduction,23 and muon

capture experiments [272], the last of these also being the primary source for measurements

of the pseudoscalar form factor 𝐺𝑃(𝑄2) [271, 273]. Our limited understanding of the axial

weak form factors of the nucleon is a concern for future precision neutrino experiments,

although a high-statistics neutrino measurement using a hydrogen or deuterium target

may improve the existing constraints [178, 179].

While more sophisticated treatments of the nucleon form factors exist in the literature

(e.g., [274]), one commonly-used parameterization assumes that the 𝑄2 dependence of the

form factors can be described by the dipole shape

𝐺𝐷(𝑄2, 𝑀) = (1 + 𝑄2

𝑀2 )
−2

, (3.123)

where 𝑀 is an empirically-determined parameter. Under this assumption, the form factors

may be written as [59, 275, 276]

𝐹 𝑛
1 (𝑄2) =

𝜇𝑛
𝜇𝑁

𝑄2

4𝑚2
𝑁 + 𝑄2 𝐺𝐷(𝑄2, 𝑀𝑉) (3.124)

𝐹 𝑝
1 (𝑄2) =

4𝑚2
𝑁 + 𝜇𝑝

𝜇𝑁
𝑄2

4𝑚2
𝑁 + 𝑄2 𝐺𝐷(𝑄2, 𝑀𝑉) (3.125)

𝐹1(𝑄2) = 𝐹 𝑝
1 (𝑄2) − 𝐹 𝑛

1 (𝑄2) =
4𝑚2

𝑁 + (𝜇𝑝−𝜇𝑛
𝜇𝑁

) 𝑄2

4𝑚2
𝑁 + 𝑄2 𝐺𝐷(𝑄2, 𝑀𝑉) (3.126)

𝐹 𝑛
2 (𝑄2) =

4𝑚2
𝑁

𝜇𝑛
𝜇𝑁

4𝑚2
𝑁 + 𝑄2 𝐺𝐷(𝑄2, 𝑀𝑉) (3.127)

𝐹 𝑝
2 (𝑄2) =

4𝑚2
𝑁( 𝜇𝑝

𝜇𝑁
− 1)

4𝑚2
𝑁 + 𝑄2 𝐺𝐷(𝑄2, 𝑀𝑉) (3.128)

𝐹2(𝑄2) = 𝐹 𝑝
2 (𝑄2) − 𝐹 𝑛

2 (𝑄2) =
4𝑚2

𝑁 (𝜇𝑝−𝜇𝑛
𝜇𝑁

− 1)
4𝑚2

𝑁 + 𝑄2 𝐺𝐷(𝑄2, 𝑀𝑉) (3.129)

𝐺𝐴(𝑄2) = 𝑔𝐴 𝐺𝐷(𝑄2, 𝑀𝐴) (3.130)

23For example, the reaction 𝑒− + 𝑝 → 𝑒− + 𝑛 + 𝜋+.
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𝐺𝑃(𝑄2) = 2𝑚2
𝑁 𝑔𝐴

𝑚2
𝜋 + 𝑄2 𝐺𝐷(𝑄2, 𝑀𝐴) (3.131)

where 𝐹 𝑝
1 (𝐹 𝑛

1 ) is the Dirac electromagnetic form factor of the proton (neutron), 𝐹 𝑝
2 (𝐹 𝑛

2 )

is the Pauli electromagnetic form factor of the proton (neutron),

𝑔𝐴 ≡ 𝐺𝐴(0) = 1.2695 ± 0.0029. (3.132)

is the axial coupling constant of the nucleon [59], 𝜇𝑁 is the nuclear magneton, 𝑚𝜋 is the

charged pion mass, 𝜇𝑝 (𝜇𝑛) is the magnetic moment of the proton (neutron), and 𝑀𝑉 and

𝑀𝐴 are the vector and axial-vector masses, which have the approximate values [59]

𝑀𝑉 ≈ 0.84 GeV (3.133)

𝑀𝐴 = 1.026 ± 0.021 GeV. (3.134)

3.8 Multipole expansion of the nuclear current

At this point in the derivation, all of the ingredients needed to compute the differential

cross section for charged current neutrino-nucleus scattering at low energies have been

assembled. However, the calculation may be made much more feasible if one performs a

multipole expansion of the position-space free nucleon transition operator ̂𝒪𝜇 = 𝑒𝑖𝐪⋅𝐱 ̂j𝜇.

Doing so allows one to take advantage of the Wigner-Eckart theorem (described below) to

eliminate the sums over the initial (𝑀𝑖) and final (𝑀𝑓) nucleus helicities in the expression

for ∣𝒯𝑓𝑖∣
2 (see eq. (3.102)). It also allows one to easily identify the leading-order terms

when the Lorentz-invariant amplitude ℳ is evaluated in the limit of small momentum

transfer (𝑞 → 0), a point that will be revisited in section 3.11.

3.8.1 Plane wave expansion

Consider the quantity ∣𝒯𝑓𝑖∣
2 from eq. (3.102). Partially evaluating the sum over 𝜇 and 𝜈

(in spherical coordinates) leads to the expressions

∣𝒯𝑓𝑖∣
2 = ∑

𝑀𝑖

∑
𝑀𝑓

𝑂𝜇 𝑂𝜈∗ L𝜇𝜈

= ∑
𝑀𝑖

∑
𝑀𝑓

[∣𝑂�0∣
2
L
�0�0

+ 𝑂�0 𝑂𝑀∗ L
�0𝑀 + 𝑂𝑀 𝑂�0∗ L𝑀�0

+ 𝑂𝑀 𝑂𝑁∗ L𝑀𝑁]
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= ∑
𝑀𝑖

∑
𝑀𝑓

[∣𝑂�0∣
2
L
�0�0

+ 𝑂�0 𝑂𝑀∗ L
�0𝑀 + (𝑂�0 𝑂𝑀∗ L

�0𝑀)
∗

+ 𝑂𝑀 𝑂𝑁∗ L𝑀𝑁]

= ∑
𝑀𝑖

∑
𝑀𝑓

[∣𝑂�0∣
2
L
�0�0

+ 2 ℜ [𝑂�0 𝑂𝑀∗ L
�0𝑀] + 𝑂𝑀 𝑂𝑁∗ L𝑀𝑁] . (3.135)

To proceed with the multipole expansion, choose a coordinate system in which the

momentum transfer 𝐪 points along the positive 𝑧 direction (i.e., the positive 0 direction in

the spherical basis). For this choice of coordinates, the plane wave 𝑒𝑖𝐪⋅𝐱 may be expanded

as a series of spherical waves:

𝑒𝑖𝐪⋅𝐱 = ∑
𝐽

𝑖𝐽√4𝜋(2𝐽 + 1) 𝑗𝐽(𝜅𝑟) 𝑌𝐽0( ̂𝐫). (3.136)

Here 𝜅 ≡ |𝐪| is the magnitude of the 3-momentum transfer, 𝑟 = |𝐱| is the radial coordi-

nate, ̂𝐫 = 𝐱/𝑟 is a unit vector pointing in the direction of 𝐱, 𝑗𝐽(𝑥) is the 𝐽th spherical

Bessel function of the first kind, and 𝑌𝐽0( ̂𝐫) is a spherical harmonic. Using this expansion

allows one to write the spherical components of the position-space free nucleon transition

operator as

̂𝒪�0(𝑘) = ∑
𝐽

̂𝒪�0(𝑘, 𝐽) = ∑
𝐽

𝑖𝐽√4𝜋(2𝐽 + 1) 𝑗𝐽(𝜅𝑟𝑘) 𝑌𝐽0( ̂𝐫𝑘) ̂j�0(𝑘) (3.137)

̂𝒪𝑀(𝑘) = ∑
𝐽

̂𝒪𝑀(𝑘, 𝐽) = ∑
𝐽

𝑖𝐽√4𝜋(2𝐽 + 1) 𝑗𝐽(𝜅𝑟𝑘) 𝑌𝐽0( ̂𝐫𝑘) ̂j𝑀(𝑘)

= ∑
𝐽

∑
𝐿

𝑖𝐿 (𝐿 0 1 𝑀 | 𝐽 𝑀) √4𝜋(2𝐿 + 1) 𝑗𝐿(𝜅𝑟𝑘)[𝑌𝐿 ⊗ ̂jjj](𝑘)
𝐽𝑀

(3.138)

where the spherical tensor product [𝑌𝐿 ⊗ ̂jjj](𝑘)
𝐽𝑀

is given by

[𝑌𝐿 ⊗ ̂jjj](𝑘)
𝐽𝑀

= ∑
𝑟

∑
𝑠

(𝐿 𝑟 1 𝑠 | 𝐽 𝑀) 𝑌𝐿𝑟( ̂𝐫𝑘) ̂j𝑠(𝑘). (3.139)

The last expression in eq. (3.138) was obtained by using the result derived in appendix B

after noting that the ̂j𝑀 are components of a rank 1 spherical tensor (a 3-vector).

3.8.2 The Wigner-Eckhart theorem

Let ⟨𝜁′ 𝑗′ 𝑚′| 𝑇𝐿𝑀 |𝜁 𝑗 𝑚⟩ be an arbitrary matrix element where 𝑇𝐿𝑀 is the 𝑀th component

of a spherical tensor 𝑇 of rank 𝐿 and the |𝜁 𝑗 𝑚⟩ are quantum state vectors with definite
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values of total angular momentum 𝑗 and its projection quantum number 𝑚. The symbol

𝜁 denotes any additional quantum numbers needed to fully specify each state vector. The

Wigner-Eckart theorem asserts that [260] any such matrix element may be expressed as

the product of a geometric factor containing the projection quantum numbers 𝑚′, 𝑀,

and 𝑚, and a constant called the reduced matrix element which is independent of the

projections:

⟨𝜁′ 𝑗′ 𝑚′| 𝑇𝐿𝑀 |𝜁 𝑗 𝑚⟩ = 1√
2𝑗′ + 1

(𝑗 𝑚 𝐿 𝑀 | 𝑗′ 𝑚′) ⟨𝜁′ 𝑗′ ∥ 𝐓𝐿 ∥ 𝜁 𝑗⟩. (3.140)

In the statement of the Wigner-Eckart theorem above, (𝑗 𝑚 𝐿 𝑀 | 𝑗′ 𝑚′) is a Clebsch-

Gordan coefficient and ⟨𝜁′ 𝑗′ ∥ 𝐓𝐿 ∥ 𝜁 𝑗⟩ is the reduced matrix element, denoted by double

bars (‖). This thesis uses Racah’s convention [277] (which is also used in references

[242] and [260]) for the reduced matrix elements. Note that the Wigner-Eckart theorem

implies that the reduced matrix element obeys the same selection rule for 𝑗′, 𝐿, and 𝑗 as

the Clebsch-Gordan coefficient in eq. (3.140). That is,

⟨𝜁′ 𝑗′ ∥ 𝐓𝐿 ∥ 𝜁 𝑗⟩ = 0 unless |𝑗 − 𝐿| ≤ 𝑗′ ≤ 𝑗 + 𝐿. (3.141)

3.8.3 The reduced nuclear matrix element tensor

Recognizing that 𝑌𝐽𝑀( ̂𝐫) and [𝑌𝐿 ⊗ ̂j]
𝐽𝑀

are both spherical tensors of rank 𝐽 allows one

to use the Wigner-Eckart theorem to write expressions for 𝑂�0 and 𝑂𝑀 in terms of reduced

nuclear matrix elements:

𝑂�0 = ∑
𝐽

𝑂�0(𝐽) = ∑
𝐽

1
√2𝐽𝑓 + 1

(𝐽𝑖 𝑀𝑖 𝐽 0 | 𝐽𝑓 𝑀𝑓) ⟨𝐽𝑓 ∥ �̂��0(𝐽) ∥ 𝐽𝑖⟩

= ∑
𝐽

(−1)𝐽𝑖−𝑀𝑖
√

2𝐽 + 1
(𝐽𝑓 𝑀𝑓 𝐽𝑖 −𝑀𝑖 | 𝐽 0) ⟨𝐽𝑓 ∥ �̂��0(𝐽) ∥ 𝐽𝑖⟩ (3.142)

𝑂𝑀 = ∑
𝐽

𝑂𝑀(𝐽) = ∑
𝐽

1
√2𝐽𝑓 + 1

(𝐽𝑖 𝑀𝑖 𝐽 𝑀 | 𝐽𝑓 𝑀𝑓) ⟨𝐽𝑓 ∥ �̂�𝑀(𝐽) ∥ 𝐽𝑖⟩

= ∑
𝐽

(−1)𝐽𝑖−𝑀𝑖
√

2𝐽 + 1
(𝐽𝑓 𝑀𝑓 𝐽𝑖 −𝑀𝑖 | 𝐽 𝑀) ⟨𝐽𝑓 ∥ �̂�𝑀(𝐽) ∥ 𝐽𝑖⟩ (3.143)
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where, under the impulse approximation,

�̂�𝜇(𝐽) ≡
𝐴

∑
𝑘=1

̂𝒪𝜇(𝑘, 𝐽). (3.144)

The identity

(𝑗1 𝑚1 𝑗2 𝑚2 | 𝑗 𝑚) = (−1)𝑗1−𝑚1√ 2𝑗 + 1
2𝑗2 + 1

(𝑗 𝑚 𝑗1 −𝑚1 | 𝑗2 𝑚2) . (3.145)

has been used in eqs. (3.142) and (3.143).

The Clebsch-Gordan coefficients obey the orthogonality relation

∑
𝑚1

∑
𝑚2

( 𝑗 𝑚 | 𝑗1 𝑚1 𝑗2 𝑚2) (𝑗1 𝑚1 𝑗2 𝑚2 | 𝑗′ 𝑚′) = 𝛿𝑗𝑗′𝛿𝑚𝑚′ . (3.146)

Inserting the expressions for 𝑂�0 and 𝑂𝑀 given in eqs. (3.142) and (3.143) into eq. (3.135)

and using the orthogonality relation from eq. (3.146) gives the result

∣𝒯𝑓𝑖∣
2 = 2ℜ(O�00 L

�00) + ∑
𝜇

O𝜇𝜇 L𝜇𝜇 (3.147)

where the sum runs over 𝜇 ∈ {��0, −1, 0, 1}, and the reduced nuclear matrix element tensor

is defined as

O𝜇𝜈 ≡ ∑
𝐽

1
2𝐽 + 1

⟨𝐽𝑓 ∥ �̂�𝜇(𝐽) ∥ 𝐽𝑖⟩⟨𝐽𝑓 ∥ �̂�𝜈(𝐽) ∥ 𝐽𝑖⟩
∗. (3.148)

The spin-summed squared amplitude ∣ℳ∣2 may therefore be written as

∣ℳ∣2 = 4𝐸𝑖𝐸𝑓
𝐺𝐹

2 |𝑉𝑢𝑑|2

2𝐽𝑖 + 1
[2ℜ(O�00 L

�00) + ∑
𝜇

O𝜇𝜇 L𝜇𝜇] . (3.149)

3.8.4 Simplified form of the lepton tensor elements

For the choice of coordinates used in the multipole expansion above, i.e.,

𝐪 ≡ 𝐩𝑁𝑓
− 𝐩𝑁𝑖

= 𝐩𝜈ℓ
− 𝐩ℓ = 𝜅 ̂𝐞0, (3.150)

where 𝜅 = |𝐪| is the magnitude of the 3-momentum transfer, one may write

̂𝐞0 = ̂𝐳 = 𝐪
𝜅

=
𝐩𝜈ℓ

− 𝐩ℓ

𝜅
. (3.151)
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With this expression for ̂𝐞0, it is possible to rewrite the lepton tensor elements L𝜇𝜈 needed

to evaluate ∣ℳ∣2 in the form24

L
�0�0

= 4 [𝐸ℓ 𝐸𝜈ℓ
+ ∣𝐩ℓ∣∣𝐩𝜈ℓ

∣ cos 𝜃ℓ] (3.152)

L
�00 = 4 [𝐸ℓ 𝑝𝜈ℓ,0 + 𝐸𝜈ℓ

𝑝ℓ,0] (3.153)

L00 = 4 [𝐸ℓ 𝐸𝜈ℓ
− ∣𝐩ℓ∣∣𝐩𝜈ℓ

∣ cos 𝜃ℓ + 2 𝑝ℓ,0 𝑝𝜈ℓ,0] (3.154)

L11 = 4 [𝐸ℓ 𝐸𝜈ℓ
− 𝑝ℓ,0 𝑝𝜈ℓ,0 − 𝐿𝜈ℓ

(𝐸ℓ 𝑝𝜈ℓ,0 − 𝐸𝜈ℓ
𝑝ℓ,0)] (3.155)

L−1,−1 = 4 [𝐸ℓ 𝐸𝜈ℓ
− 𝑝ℓ,0 𝑝𝜈ℓ,0 + 𝐿𝜈ℓ

(𝐸ℓ 𝑝𝜈ℓ,0 − 𝐸𝜈ℓ
𝑝ℓ,0)] (3.156)

where

𝑝ℓ,0 =
𝐸𝜈ℓ

∣𝐩ℓ∣ cos 𝜃ℓ − ∣𝐩ℓ∣
2

𝜅
, (3.157)

𝑝𝜈ℓ,0 =
𝐸2

𝜈ℓ
− 𝐸𝜈ℓ

∣𝐩ℓ∣ cos 𝜃ℓ

𝜅
, (3.158)

𝜃ℓ is the angle between 𝐩ℓ and 𝐩𝜈ℓ
, 𝐿𝜈ℓ

= +1 is the lepton number of the neutrino, and

𝜅 may be written in terms of 𝜃ℓ:

𝜅 = √𝐸2
𝜈ℓ

+ |𝐩ℓ|
2 − 2𝐸𝜈ℓ

|𝐩ℓ| cos 𝜃ℓ. (3.159)

3.9 First-order approximation in 𝟏/𝐦𝐍

In principle, one could directly evaluate the charged current neutrino-nucleus differential

cross section (see eq. (3.65)) by calculating ∣ℳ∣2 using a suitable model for the nuclear

wavefunctions and the results shown thus far. However, to avoid dealing with the unwieldy

full expressions for the components of the free nucleon transition operator j𝜇 given in

eqs. (3.77) and (3.78), approximations of this operator to first order in the inverse nucleon

mass 1/𝑚𝑁 are routinely used in the literature [210, 234, 242].
24See [241], but note that the lepton tensor presented there is equal to ours divided by 4𝐸𝜈ℓ

𝐸ℓ. Also,
the opposite subtraction order is used for 𝑞, i.e., 𝑞 = 𝑝ℓ − 𝑝𝜈ℓ

therein.
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When evaluating j𝜇 to first order in 1/𝑚𝑁, two points are important to consider.

First, unlike the other form factors, which are taken to be zeroth order in 1/𝑚𝑁 (see

eqs. (3.126), (3.129) and (3.130)), 𝐺𝑃(𝑄2) is intrinsically of order 𝑚2
𝑁 (see eq. (3.131)).

Therefore, to maintain consistency, one should keep terms in j𝜇 involving 𝐺𝑃(𝑄2) up to

order 1/𝑚3
𝑁, while terms involving any of the other form factors should be dropped beyond

order 1/𝑚𝑁. Second, one must treat terms involving factors of 𝑞�0 carefully. Although for

free, nonrelativistic nucleons,

𝑞�0 =
∣𝐩𝑁𝑓

∣
2

− ∣𝐩𝑁𝑖
∣2

2𝑚𝑁
=

|𝐪|2 + 2𝐪 ⋅ 𝐩𝑁𝑖

2𝑚𝑁
(3.160)

is a first order quantity in 1/𝑚𝑁, this is not necessarily true for bound nucleons, which are

off their mass shell [231]. Here we will follow the Donnelly-Walecka [210] and Krmpotić-

Samana [242] formalisms in assuming that 𝑞�0 is first order in 1/𝑚𝑁 based on its free-

nucleon value.

Taking these details into account allows one to obtain the following expressions25 for

the components of the free nucleon transition operator:

j�0 = [𝐹1(𝑄2) −
𝐩𝑁𝑖

⋅ 𝝈
𝑚𝑁

𝐺𝐴(𝑄2) − 𝐪 ⋅ 𝝈
2𝑚𝑁

𝐺𝐴(𝑄2)

− 𝐪 ⋅ 𝝈
𝑚𝑁

𝐺3(𝑄2) + 𝑞�0

𝑚𝑁
(𝐪 ⋅ 𝝈

2𝑚𝑁
) 𝐺𝑃(𝑄2)]𝑡− + 𝒪(1/𝑚2

𝑁) (3.161)

and

j𝑀 = [ − 𝜎𝑀 𝐺𝐴(𝑄2) + 𝑞𝑀

𝑚𝑁
𝐹3(𝑄2) + (𝐹1(𝑄2) − 𝐹2(𝑄2)) 𝑖(𝝈 × 𝐪)𝑀

2𝑚𝑁

+ (
2𝑝𝑀

𝑁𝑖
+ 𝑞𝑀

2𝑚𝑁
)𝐹1(𝑄2) + 𝑞𝑀

𝑚𝑁
(𝐪 ⋅ 𝝈

2𝑚𝑁
) 𝐺𝑃(𝑄2)]𝑡− + 𝒪(1/𝑚2

𝑁) .

(3.162)

25Walecka [210] includes an additional term +𝑞�0 𝐹3(𝑄2) 𝑡− in the first order expression for j�0 because,
in his version of eq. (3.30), the induced scalar form factor 𝐹3(𝑄2) appears without a prefactor of 1/𝑚𝑁,
and yet 𝐹3(𝑄2) is still assumed to be intrinsically zeroth order in 1/𝑚𝑁. The corresponding term in
the present formalism is (𝑞�0/𝑚𝑁) 𝐹3(𝑄2) 𝑡−, which is second order in 1/𝑚𝑁.
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In the spherical basis, the cross product 𝐀 × 𝐁 of two 3-vectors is given by [260]

(𝐀 × 𝐁)𝑀 = −𝑖
√

2 [𝐀1 ⊗ 𝐁1]1𝑀 = −𝑖
√

2 ∑
𝑀1,𝑀2

(1 𝑀1 1 𝑀2 | 1 𝑀) 𝐴𝑀1
𝐵𝑀2

. (3.163)

where (1 𝑀1 1 𝑀2 | 1 𝑀) is a Clebsch-Gordan coefficient. Recall that, during the multipole

expansion in section 3.8, a coordinate system was chosen in which the 3-momentum

transfer 𝐪 was directed along the positive 𝑧 axis (the positive 0 axis in the spherical

basis). With this choice of coordinates, it follows that

𝑞𝑀 = 𝛿𝑀0 𝜅 (3.164)

and

𝐪 ⋅ 𝝈 = 𝜅 𝜎0, (3.165)

where, like before, 𝜅 ≡ |𝐪|. Also, invoking eq. (3.163) leads to the result

𝑖(𝝈 × 𝐪)𝑀 = 𝜅 𝑀𝜎𝑀. (3.166)

Combining these results with eqs. (B.19), (3.137), (3.138), (3.161) and (3.162) yields

the expressions

̂𝒪�0(𝑘, 𝐽) = 𝑖𝐽√4𝜋 (2𝐽 + 1) 𝑗𝐽(𝜅𝑟𝑘) 𝑌𝐽0( ̂𝐫𝑘) [𝐹1(𝑄2) −
𝐩𝑁𝑖

⋅ 𝝈
𝑚𝑁

𝐺𝐴(𝑄2)] 𝑡−(𝑘)

+ ∑
𝐿

𝑖𝐿
√

2𝐿 + 1 (𝐿 0 1 0 | 𝐽 0) 𝑗𝐿(𝜅𝑟𝑘) [𝑌𝐿 ⊗ 𝝈](𝑘)𝐽𝑀 G�0(𝑄2) 𝑡−(𝑘) (3.167)

and

̂𝒪𝑀(𝑘, 𝐽) = 𝑖𝐽√4𝜋(2𝐽 + 1) 𝑗𝐽(𝜅𝑟𝑘) 𝑌𝐽0( ̂𝐫𝑘) [1
2

𝐹1(𝑄2) + 𝐹3(𝑄2)] 𝛿𝑀0 𝜅
𝑚𝑁

𝑡−(𝑘)

+ ∑
𝐿

𝑖𝐿√4𝜋(2𝐿 + 1) (𝐿 0 1 𝑀 | 𝐽 𝑀) 𝑗𝐿(𝜅𝑟𝑘)[G𝑀(𝑄2) [𝑌𝐿 ⊗ 𝝈](𝑘)𝐽𝑀

+ 𝐹1(𝑄2)
𝑚𝑁

[𝑌𝐿 ⊗ 𝐩𝑁𝑖
](𝑘)

𝐽𝑀
]𝑡−(𝑘), (3.168)
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where

G
�0
(𝑄2) ≡ 𝜅

𝑚𝑁
[ 𝑞�0

2𝑚𝑁
𝐺𝑃(𝑄2) − 1

2
𝐺𝐴(𝑄2) − 𝐺3(𝑄2)] (3.169)

and

G𝑀(𝑄2) ≡ 𝜅
𝑚𝑁

[𝑀 𝐹1(𝑄2) − 𝐹2(𝑄2)
2𝑚𝑁

− 𝐺𝐴(𝑄2) + 𝜅2

2𝑚2
𝑁

𝛿𝑀0 𝐺𝑃(𝑄2)] . (3.170)

Equations (3.144), (3.167) and (3.168) imply that

⟨𝐽𝑓 ∥ �̂��0(𝐽) ∥ 𝐽𝑖⟩ = 𝐹1(𝑄2)N 𝑉
𝐽 (𝑡−) − 𝐺𝐴(𝑄2)

𝑚𝑁
N𝐴

𝐽 (𝑡−) + G
�0
(𝑄2)N𝐴

𝐽0(𝑡−) (3.171)

and

⟨𝐽𝑓 ∥ �̂�𝑀(𝐽) ∥ 𝐽𝑖⟩ = 𝛿𝑀0 𝜅
𝑚𝑁

[1
2

𝐹1(𝑄2) + 𝐹3(𝑄2)] N 𝑉
𝐽 (𝑡−)

+ 𝐹1(𝑄2)
𝑚𝑁

N 𝑉
𝐽𝑀(𝑡−) + G𝑀(𝑄2)N𝐴

𝐽𝑀(𝑡−). (3.172)

Here the four basic reduced matrix elements are defined by

N 𝑉
𝐽 (Θ) ≡ 𝑖𝐽 √4𝜋(2𝐽 + 1) ⟨𝐽𝑓 ∥

𝐴

∑
𝑘=1

𝑗𝐽(𝜅𝑟𝑘) 𝑌𝐽( ̂𝐫𝑘) Θ(𝑘) ∥ 𝐽𝑖⟩ (3.173)

N𝐴
𝐽 (Θ) ≡ 𝑖𝐽 √4𝜋(2𝐽 + 1) ⟨𝐽𝑓 ∥

𝐴

∑
𝑘=1

𝑗𝐽(𝜅𝑟𝑘) 𝑌𝐽( ̂𝐫𝑘) (𝐩𝑁𝑖
⋅ 𝝈) Θ(𝑘) ∥ 𝐽𝑖⟩ (3.174)

N 𝑉
𝐽𝑀(Θ) ≡ ∑

𝐿
𝑖𝐿 √4𝜋(2𝐿 + 1) (𝐿 0 1 𝑀 | 𝐽 𝑀) ⟨𝐽𝑓 ∥

𝐴

∑
𝑘=1

𝑗𝐽(𝜅𝑟𝑘) [𝑌𝐿 ⊗ 𝐩𝑁𝑖
](𝑘)

𝐽
Θ(𝑘) ∥ 𝐽𝑖⟩

(3.175)

N𝐴
𝐽𝑀(Θ) ≡ ∑

𝐿
𝑖𝐿 √4𝜋(2𝐿 + 1) (𝐿 0 1 𝑀 | 𝐽 𝑀) ⟨𝐽𝑓 ∥

𝐴

∑
𝑘=1

𝑗𝐽(𝜅𝑟𝑘) [𝑌𝐿 ⊗ 𝝈](𝑘)𝐽 Θ(𝑘) ∥ 𝐽𝑖⟩.

(3.176)

where Θ is an operator in isospace. As shown above, for charged current neutrino scat-

tering, Θ = 𝑡−.
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3.10 Correction for the final-state Coulomb interaction

Up to this point in the derivation, the final-state Coulomb interaction between the out-

going charged lepton and the residual nucleus has been ignored. Although a detailed

consideration of final-state Coulomb effects is available in the beta-decay literature,26

calculations of neutrino-nucleus scattering at low energies often use one of two approxi-

mations.

3.10.1 The Fermi function

The first of these approximations is a rescaling of the outgoing lepton wavefunction origi-

nally proposed by Fermi in his theory of beta decay [21, 22]. Since the amplitudes for beta

decay and charged current neutrino-nucleus scattering are related via crossing symmetry,

Fermi’s approach may also be applied to low-energy neutrino scattering.

To apply Fermi’s correction, first note that the momentum space wavefunction for the

final-state lepton has been approximated in the previous calculations as the Dirac spinor

for a free particle, i.e.,

𝑢ℓ(𝑝ℓ) = √2𝐸ℓ √𝐸ℓ + 𝑚ℓ
2𝐸ℓ

⎛⎜
⎝

1
(𝐩ℓ⋅𝝈)

𝐸ℓ+𝑚ℓ

⎞⎟
⎠

𝜉ℓ, (3.177)

where 𝜉ℓ is a two-component Pauli spinor and the √2𝐸ℓ prefactor arises because of our

relativistic normalization convention.27 The corresponding relativistic wavefunction in

position space 𝜓ℓ(𝑥ℓ) is the plane wave given by

𝜓ℓ(𝑥ℓ) = 𝑉 −1/2 𝑇 −1/2 𝑢ℓ(𝑝ℓ) 𝑒−𝑖𝑝ℓ⋅𝑥ℓ (3.178)

where the factors 𝑉 and 𝑇 have been introduced so that the wavefunction is correctly
26See, e.g., reference [278].
27See eq. (3.72) and the discussion immediately following it.
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normalized (see eq. (3.73)) within the box of section 3.3, i.e.,

⟨𝜓ℓ ∣ 𝜓ℓ⟩ = ∫ 𝜓†
ℓ(𝑥) 𝜓ℓ(𝑥) 𝑑4𝑥 = 𝑉 −1𝑇 −1 ∫ 𝑒𝑖𝑝ℓ⋅𝑥ℓ 𝑢†

ℓ(𝑝ℓ) 𝑢ℓ(𝑝ℓ) 𝑒−𝑖𝑝ℓ⋅𝑥ℓ 𝑑4𝑥

= 2𝐸ℓ 𝜉†
ℓ 𝜉ℓ 𝑉 −1𝑇 −1 ∫ 𝑒𝑖𝑝ℓ⋅𝑥ℓ 𝑒−𝑖𝑝ℓ⋅𝑥ℓ 𝑑4𝑥 = 2𝐸ℓ 𝜉†

ℓ 𝜉ℓ 𝑉 −1𝑇 −1 ∫ 𝑑4𝑥

= 2𝐸ℓ 𝜉†
ℓ 𝜉ℓ. (3.179)

Choose a coordinate system in which the final-state nucleus is at rest at the origin,

called the “final nucleus rest frame’’ (FNR frame). Then, if the residual nucleus is modeled

as a point with electric charge 𝑍𝑓 𝑒, where 𝑒 is the elementary charge and 𝑍𝑓 is the proton

number of the final-state nucleus, it can be shown [279] that the exact charged lepton

wavefunction approaches the following limiting value28 near the origin:

lim
𝑥ℓ→0

𝜓ℓ(𝑥ℓ) = 𝑁√
𝑉 𝑇

√2𝐸ℓ √𝐸ℓ + 𝑚ℓ
2𝐸ℓ

(1 +
𝑖 𝑍𝑓 𝛼
1 + 𝑆

𝐚 ⋅ 𝐱ℓ
𝑟ℓ

) ⎛⎜
⎝

1

𝑀 (𝐩ℓ⋅𝝈)
𝐸ℓ+𝑚ℓ

⎞⎟
⎠

𝜉ℓ.

(FNR frame, 3.180)

Here, 𝑁 is a function that will be discussed momentarily, 𝛼 is the fine structure constant,

𝑟ℓ ≡ |𝐱ℓ| is the charged lepton radial coordinate, 𝑆 ≡ √1 − 𝛼2𝑍2
𝑓 , 𝐚 ≡ ( 0 𝝈

𝝈 0 ), and

𝑀 ≡ 𝐸ℓ + 𝑚ℓ
𝐸ℓ + 𝑆 𝑚ℓ

(1 + 𝑖
𝑍𝑓 𝛼 𝑚ℓ

|𝐩ℓ|
) . (FNR frame, 3.181)

Since the term proportional to 𝐚 ⋅ 𝐱ℓ in eq. (3.180) can only contribute to transitions in

which the nuclear parity changes, [279] it may be ignored under the allowed approxima-

tion, which, as will be discussed in section 3.11, includes only parity-conserving nuclear

transitions. This term is also sometimes neglected in calculations that include the possi-

bility of parity-changing nuclear transitions.29 A possible justification for this is that the

Fermi function (obtained below) “exhibits the main dependence on the energy and the

nuclear charge number,’’ for the charged lepton radial wavefunction 𝜓ℓ(𝑥), independent
28Note that reference [279] uses Gaussian natural units, so the value of the elementary charge used

therein is 𝑒 =
√

𝛼. To avoid confusion, the relevant factors of 𝑒 have been rewritten here in terms of the
fine structure constant, which has the same value in all systems of units.

29Examples include [242, 280–282], which employ the Fermi function derived here and therefore im-
plicitly neglect the 𝐚 ⋅ 𝐱ℓ term.
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of the model of the nuclear charge distribution used in the calculation [278]. Since the fine

structure constant is small (𝛼 ≈ 1/137), the approximation 𝑀 ≈ 1 is typically good if the

charged lepton is relativistic. Neglecting the 𝐚 ⋅ 𝐱ℓ term and making the approximation

𝑀 ≈ 1 in eq. (3.180) yields the expression

lim
𝑥ℓ→0

𝜓ℓ(𝑥ℓ) ≈ 𝑁√
𝑉 𝑇

√2𝐸ℓ √𝐸ℓ + 𝑚ℓ
2𝐸ℓ

⎛⎜
⎝

1
(𝐩ℓ⋅𝝈)

𝐸ℓ+𝑚ℓ

⎞⎟
⎠

𝜉ℓ = 𝑁 𝑉 −1/2 𝑇 −1/2 𝑢ℓ(𝑝ℓ).

(FNR frame, 3.182)

Comparing eqs. (3.178) and (3.182), one finds that the effect of the Coulomb interaction

on the charged lepton wavefunction in the vicinity of the nucleus may be approximated

by scaling the original plane wave expression by a factor 𝑁. Since the absolute square of

the charged lepton momentum space wavefunction appears in the lepton tensor L𝜇𝜈, the

cross section described above should be multiplied by the correction factor ∣𝑁 ∣2, which

turns out to be [279]

∣𝑁 ∣2 = 𝐸ℓ + 𝑆 𝑚ℓ
𝐸ℓ + 𝑚ℓ

𝐹(𝑍𝑓, 𝐸ℓ) ≈ 𝐹(𝑍𝑓, 𝐸ℓ) (3.183)

where the approximation in the second step is made for consistency with the earlier choice

of 𝑀 ≈ 1, and the Fermi function [21, 22] may be written as

𝐹(𝑍𝑓, 𝐸ℓ) = 2(1 + 𝑆)
[Γ(1 + 2𝑆)]2 (2 |𝐩ℓ| 𝑅)2𝑆−2 𝑒−𝜋 𝜂 |Γ (𝑆 + 𝑖𝜂)|2 . (FNR frame, 3.184)

Here,

𝑅 ≈ 1.2 𝐴1/3 fm
ℏ 𝑐

(3.185)

is the nuclear radius (in natural units), and the Sommerfeld parameter 𝜂 is given by

𝜂 =
𝛼 𝑍𝑓 𝑍ℓ 𝐸ℓ

|𝐩ℓ|
, (FNR frame, 3.186)

where 𝑍ℓ is the charge of the outgoing lepton in units of the elementary charge, e.g.,

𝑍ℓ = −1 for electrons and 𝑍ℓ = +1 for positrons.

Although the cross section derivation in this chapter has been done in the center-

of-momentum frame, the Fermi function presented here was obtained in the rest frame

of the final-state nucleus. Because the Coulomb potential seen by the outgoing lepton
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depends only on its motion relative to the nucleus, however, the Fermi function should be

regarded as a Lorentz invariant correction factor. That is, 𝐹(𝑍𝑓, 𝐸ℓ) should be evaluated

in the FNR frame when computing the cross section in any frame of reference. This may

be made more explicit by rewriting the expression for the Fermi function given above in

terms of the Lorentz-invariant relative speed 𝛽𝑓,rel of the final nucleus and lepton, i.e.,

𝐹(𝑍𝑓, 𝛽𝑓,rel) = 2(1 + 𝑆)
[Γ(1 + 2𝑆)]2 (2 𝛾𝑓,rel 𝛽𝑓,rel 𝑚ℓ 𝑅)2𝑆−2 𝑒−𝜋 𝜂 |Γ (𝑆 + 𝑖𝜂)|2 (3.187)

where 𝛾𝑓,rel ≡ (1 − 𝛽2
𝑓,rel)

−1/2, the Sommerfeld parameter is now written as

𝜂 =
𝛼 𝑍𝑓 𝑍ℓ

𝛽𝑓,rel
, (3.188)

and 𝛽𝑓,rel is given by eq. (3.45) with the substitutions 𝑖, 1 → ℓ for the final lepton

4-momentum and 𝑖, 2 → 𝑓 for the final nucleus 4-momentum. In the FNR frame, of

course, 𝛽𝑓,rel is simply the speed of the final-state lepton.

Fermi’s correction for final-state Coulomb effects in the neutrino charged current cross

section may therefore be expressed in any frame of reference as the substitution

∣ℳ∣2 → ∣ℳ∣2 𝐹(𝑍𝑓, 𝛽𝑓,rel) (3.189)

where 𝐹(𝑍𝑓, 𝛽𝑓,rel) is defined as in eq. (3.187).

3.10.2 Effective momentum approximation

The procedure used above to derive the Fermi function implicitly assumes that the final

lepton wavefunction may be adequately described using only its s-wave (partial wave

with zero orbital angular momentum) component. This approximation arises because

only the s-wave part of the wavefunction survives [279] when the 𝑥ℓ → 0 limit is taken in

eq. (3.180). Although this approach works well for low-energy electrons, a more careful

theoretical treatment of the Coulomb distortion in charged current neutrino scattering

shows that the Fermi function overestimates the Coulomb effects for high-energy electrons

and performs particularly poorly for muons [283].

For situations where the Fermi function is inadequate, an alternative to performing
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a very involved calculation of the Coulomb effects30 is to apply an effective momentum

approximation (EMA) first developed to describe electron-nucleus scattering (see, e.g.,

[286] and references therein) and later applied to the charged current neutrino-nucleus

case by Engel [283].

Under this approximation, the lab-frame outgoing lepton energy and momentum are

replaced by the effective values

𝐸 eff
ℓ = 𝐸ℓ − 𝑉𝐶(0) ∣𝐩eff

ℓ ∣ = √(𝐸 eff
ℓ )2 − 𝑚2

ℓ (lab frame, 3.190)

when the Lorentz-invariant amplitude ℳ is calculated, resulting in a larger effective value

of the momentum transfer 𝑞. The Coulomb potential evaluated at the nuclear center of

mass, 𝑉𝐶(0), is usually taken to be that at the center of a uniformly-charged sphere, i.e.,

𝑉𝐶(0) ≈
3 𝑍𝑓 𝑍ℓ 𝛼

2 𝑅
, (3.191)

where 𝑅, 𝑍𝑓 and 𝑍ℓ are defined as in eqs. (3.185)–(3.186). The amplitude of the outgoing

lepton wavefunction is also rescaled by a factor

𝑓EMA =
∣𝐩eff

ℓ ∣
|𝐩ℓ|

, (lab frame, 3.192)

which results in the cross section being multiplied by the factor 𝑓2
EMA.

Using these adjustments in place of the Fermi function has been found to be a good

approximation for final-state electrons in most cases where the Fermi function is inap-

propriate [283]. For final-state muons, a modified effective momentum approximation

(MEMA) is recommended [283] to be used at all energies. Under the MEMA, the rescal-

ing factor 𝑓EMA from the ordinary EMA is replaced by

𝑓MEMA = √∣𝐩eff
ℓ ∣ 𝐸 eff

ℓ

|𝐩ℓ| 𝐸ℓ
(lab frame, 3.193)

while the rest of the procedure is unchanged.
30For example, by using the Distorted Wave Born Approximation (DWBA), which is discussed in, e.g.,

references [284, 285].
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To combine the EMA and MEMA recommendations in the present formalism, define

the Coulomb correction factor 𝑓𝐶 by

𝑓𝐶 ≡
⎧{
⎨{⎩

𝑓EMA ℓ = 𝑒

𝑓MEMA ℓ = 𝜇.
(3.194)

Thus, 𝑓𝐶 = 𝑓EMA when the final-state lepton is an (anti)electron, and 𝑓𝐶 = 𝑓MEMA when

it is a muon or antimuon. Because tau leptons have a mass of about 1.777 GeV, charged

current reactions that produce them are far above the energy scale at which the MARLEY

models are expected to be appropriate.

3.10.3 Coulomb-corrected differential cross section

The final-state Coulomb interaction increases the charged current cross section for matter

neutrinos and decreases it for antineutrinos. Because the EMA overestimates the size

of this effect for electrons at low energies while the Fermi function does the same at

high energies, a reasonable way of combining the two approximate Coulomb corrections

described above is, for a given neutrino energy, to choose the approach which gives the

smaller cross section for neutrinos and the larger cross section for antineutrinos.31

To incorporate this treatment of Coulomb effects into the present cross section calcu-

lation, define the Coulomb-corrected spin-summed squared amplitude

∣ℳ∣2
𝐶

≡ min {∣ℳ∣2 𝐹(𝑍𝑓, 𝛽𝑓,rel), ∣ℳeff∣2 𝑓2
𝐶} (3.195)

where 𝐹(𝑍𝑓, 𝛽𝑓,rel) is defined in eq. (3.187), and

ℳeff = ℳ ∣
𝐸ℓ=𝐸 eff

ℓ ,|𝐩ℓ|=∣𝐩eff
ℓ ∣

(3.196)

is the Lorentz-invariant amplitude evaluated using the effective values of the final-state

lepton energy and 3-momentum.

To obtain the value of ℳeff in the center-of-momentum (CM) frame, one may perform

a Lorentz transformation of the effective lepton energy 𝐸 eff
ℓ from the lab to the CM frame.

31 Publications which have previously used this method for combining the approximate Coulomb cor-
rections include [230, 237].
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To do so, note that the velocity 𝛽𝛽𝛽CM of the CM frame as viewed in the lab frame is given

by

𝛽𝛽𝛽CM =
𝐩𝜈ℓ

𝐸𝜈ℓ
+ 𝑚𝑖

(3.197)

where 𝑚𝑖 is the mass of the initial nucleus. For

𝛾CM ≡ (1 − |𝛽𝛽𝛽CM|2)
−1/2

, (3.198)

the effective charged lepton energy in the CM frame 𝐸 eff,CM
ℓ is given in terms of its lab-

frame value 𝐸 eff
ℓ and the effective lab-frame 3-momentum 𝐩eff

ℓ by

𝐸 eff,CM
ℓ = 𝛾CM[𝐸 eff

ℓ − ∣𝛽𝛽𝛽CM∣∣𝐩eff
ℓ ∣ cos 𝜃lab

ℓ ], (3.199)

where 𝜃lab
ℓ is the angle between the 3-momenta of the charged lepton and the incident

neutrino as measured in the lab frame. From this result, one may also obtain the CM

frame effective 3-momentum:

∣𝐩eff,CM
ℓ ∣ = √(𝐸 eff,CM

ℓ )2 − 𝑚2
ℓ . (3.200)

To first order in 1/𝑚𝑁, the charged current neutrino-nucleus differential cross section

may now be written in the form

𝑑𝜎
𝑑 cos 𝜃ℓ

=
∣ℳ∣2

𝐶
32 𝜋 𝑠

|𝐩ℓ|
𝐸𝜈ℓ

. (CM frame, 3.201)

where ∣ℳ∣2
𝐶

is defined in eq. (3.195), ∣ℳ∣2 is given in eq. (3.149), the elements of the

reduced nuclear matrix element tensor O𝜇𝜈 may be computed using eqs. (3.171)–(3.176),

and the elements of the lepton tensor L𝜇𝜈 may be evaluated in terms of cos 𝜃ℓ using eqs.

(3.152)–(3.159).

3.11 Allowed approximation cross section

The first-order expression given in (3.201) may be used to calculate cross sections using a

suitable model for the four basic nuclear matrix elements defined in eqs. (3.173)–(3.176).

The details of such a calculation for a particular nucleus could easily form the basis for
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a complete PhD thesis32 on their own, and, unfortunately, most publications discussing

low-energy neutrino-nucleus cross sections do not include information about the individual

nuclear matrix elements that would be needed to create a fully-detailed event generator.

To work around these difficulties, we will apply the allowed approximation to the cross

section calculation outlined in earlier sections. Doing so will allow us to use published val-

ues for the leading-order nuclear matrix elements to calculate an approximate differential

cross section for charged current 𝜈𝑒 scattering on 40Ar. This approximate cross section

will then be applied in chapters 6 and 7 to the simulation of supernova neutrino events in

liquid argon, demonstrating via practical calculations the feasibility of creating a realistic

Monte Carlo event generator for neutrinos in this energy range.

To begin using the allowed approximation in the cross section calculation described

previously, first note that the 𝑛th spherical Bessel function of the first kind 𝑗𝑛(𝑥) may be

expressed as the Maclaurin series

𝑗𝑛(𝑥) = 𝑥𝑛
∞

∑
𝑘=0

(−1)𝑘 𝑥2𝑘

(2𝑘)!! (2𝑛 + 2𝑘 + 1)!!
. (3.202)

Therefore, as 𝑥 → 0, the function 𝑗𝑛(𝑥) approaches the limiting form

𝑗𝑛(𝑥) → 𝑥𝑛

(2𝑛 + 1)!!
(for small 𝑥). (3.203)

Now consider the multipole expansion of the position-space free nucleon transition

operator given in eqs. (3.137) and (3.138). Each term in the expansion contains a spherical

Bessel function 𝑗𝑛(𝜅𝑟𝑘) for 𝑛 ∈ {𝐽, 𝐿}, where 𝜅 ≡ |𝐪| is the magnitude of the 3-momentum

transfer and 𝑟𝑘 is the radial position operator for the 𝑘th nucleon. Equation (3.203) implies

that

lim
𝜅→0

𝑗𝑛(𝜅𝑟𝑘) =
⎧{
⎨{⎩

1 if 𝑛 = 0

0 otherwise
. (3.204)

To obtain a rough estimate of the range of validity of the allowed approximation

𝜅 ≈ 0, note that one may obtain a conservative upper limit on the magnitude of the

3-momentum transfer by using 𝜅 ≲ 2𝐸𝜈, i.e., the lab-frame value of 𝜅 for elastic scattering
32See, e.g., [227, 287] for recent examples of such theses.
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of the neutrino straight backward from an infinitely-massive wall. For 40Ar, one may

approximate the nuclear radius using eq. (3.185) to obtain 𝑟𝑘 ≲ 0.021 MeV. For a 10 MeV

neutrino, setting these quantities equal to their upper limits yields 𝑗0(𝜅𝑟𝑘) ≈ 0.97 and

𝑗1(𝜅𝑟𝑘) ≈ 0.14, with smaller values (< 0.02) for 𝑛 > 1. Thus, the allowed approximation

(which includes only the 𝑛 = 0 terms) should work reasonably well at this energy. For

a 50 MeV neutrino, however, applying the same procedure gives 𝑗0(𝜅𝑟𝑘) ≈ 0.41 and

𝑗1(𝜅𝑟𝑘) ≈ 0.44, demonstrating that the allowed approximation is no longer adequate.

While the estimates above provide a convenient means of checking whether the allowed

approximation might be valid for a given neutrino energy, they are somewhat pessimistic.

On average, 𝜅 and 𝑟𝑘 will be signficantly smaller than their upper bounds. Nevertheless,

more sophisticated calculations (e.g., [225, 288]) of the cross section for charged current 𝜈𝑒

scattering on 40Ar (𝜈𝑒
40ArCC) suggest that, although the allowed (𝑛 = 0) terms remain

dominant, forbidden (𝑛 ≠ 0) transitions become important at neutrino energies around

50 MeV to 60 MeV.

Under the allowed approximation, the operator j𝜇 is evaluated in the low momentum

transfer limit 𝑞 → 0, and only terms that are zeroth order in 1/𝑚𝑁 are kept. Applying

these changes to eqs. (3.137) and (3.138) yields the following expressions for the position-

space free nucleon transition operator:

̂𝒪�0(𝑘) = ∑
𝐽

̂𝒪�0(𝑘, 𝐽) ⟶ ̂𝒪�0(𝑘, 0) = 𝑔𝑉 𝑡−(𝑘) (3.205)

̂𝒪𝑀(𝑘) = ∑
𝐽

̂𝒪𝑀(𝑘, 𝐽) ⟶ ̂𝒪𝑀(𝑘, 1) = −𝑔𝐴 𝜎𝑀(𝑘) 𝑡−(𝑘) (3.206)

Here 𝑔𝑉 ≡ 𝐹1(0) ≈ 1 is the vector coupling constant of the nucleon. The components of

the reduced nuclear matrix element tensor O𝜇𝜈 needed to compute ∣𝒯𝑓𝑖∣
2 are given by the

following expressions in this limit:

O�0�0 ⟶ M𝐹 ≡ 𝑔2
𝑉 ∣⟨𝐽𝑓 ∥

𝐴

∑
𝑘=1

𝑡−(𝑘) ∥ 𝐽𝑖⟩∣
2

(3.207)

O�00 ⟶ 0 (3.208)
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O𝑀𝑀 ⟶ M𝐺𝑇 ≡ 𝑔2
𝐴
3

∣⟨𝐽𝑓 ∥
𝐴

∑
𝑘=1

𝝈(𝑘) 𝑡−(𝑘) ∥ 𝐽𝑖⟩∣
2

(3.209)

The quantity ∣𝒯𝑓𝑖∣
2 may be written in this limit as

∣𝒯𝑓𝑖∣
2 = 4M𝐹 (𝐸ℓ𝐸𝜈ℓ

+ 𝐩ℓ ⋅ 𝐩𝜈ℓ
) + 4M𝐺𝑇 (𝐸ℓ𝐸𝜈ℓ

− 1
3

𝐩ℓ ⋅ 𝐩𝜈ℓ
). (3.210)

Therefore, the spin-summed squared amplitude ∣ℳ∣2 becomes

∣ℳ∣2 ≈ 16 𝐺𝐹
2 |𝑉𝑢𝑑|2 𝐸𝜈ℓ

𝐸𝑖 𝐸ℓ 𝐸𝑓

× (𝐵(F−) [1 + 𝛽𝛽𝛽ℓ ⋅ 𝛽𝛽𝛽𝜈ℓ
] + 𝐵(GT−) [1 − 1

3
𝛽𝛽𝛽ℓ ⋅ 𝛽𝛽𝛽𝜈ℓ

]), (3.211)

where the velocity 𝛽𝛽𝛽𝑥 of particle 𝑥 is given by

𝛽𝛽𝛽𝑥 = 𝐩𝑥
𝐸𝑥

. (3.212)

The reduced Fermi and Gamow-Teller matrix elements 𝐵(F−) and 𝐵(GT−) are given in

the position-space representation by

𝐵(F−) ≡
𝑔2

𝑉 ∣⟨𝐽𝑓 ∥ ∑𝐴
𝑘=1 𝑡−(𝑘) ∥ 𝐽𝑖⟩∣

2

2𝐽𝑖 + 1
(3.213)

and

𝐵(GT−) ≡
𝑔2

𝐴 ∣⟨𝐽𝑓 ∥ ∑𝐴
𝑘=1 𝝈(𝑘) 𝑡−(𝑘) ∥ 𝐽𝑖⟩∣

2

2𝐽𝑖 + 1
. (3.214)

These matrix elements obey the selection rules

𝐵(F−) = 0 unless 𝐽𝑓 = 𝐽𝑖 and 𝜋𝑓 = 𝜋𝑖 (3.215)

and

𝐵(GT−) = 0 unless |𝐽𝑖 − 1| ≤ 𝐽𝑓 ≤ 𝐽𝑖 + 1 and 𝜋𝑓 = 𝜋𝑖 (3.216)

where 𝜋𝑖 (𝜋𝑓) is the intrinsic parity of the initial (final) nucleus. The angular momentum

rules shown here follow from the Wigner-Eckart theorem (see section 3.8.2). The nuclear
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parity is conserved in both cases because the Fermi and Gamow-Teller operators are even

under parity transformations.

Combining the results from eqs. (3.65) and (3.211) allows one to write

𝑑𝜎
𝑑 cos 𝜃ℓ

= 𝐺𝐹
2 |𝑉𝑢𝑑|2

2 𝜋
[

𝐸𝑖 𝐸𝑓

𝑠
] 𝐸ℓ |𝐩ℓ|

× ([1 + 𝛽ℓ cos 𝜃ℓ] 𝐵(F−) + [1 − 1
3

𝛽ℓ cos 𝜃ℓ] 𝐵(GT−)) (CM frame, 3.217)

where 𝜃ℓ is the angle between the 3-momenta of the incident neutrino and the outgoing

lepton.

When applying the Coulomb corrections described in section 3.10.3 to the allowed

approximation cross section shown above, one should recall that the Lorentz-invariant

amplitude ℳ was evaluated in the 𝜅 → 0 limit. To preserve this limit within the effective

momentum approximation (for which a modified value of the final lepton 4-momentum 𝑝ℓ

is used), the calculation of ℳ is left unchanged and only the rescaling factor 𝑓2
𝐶 is applied

to the cross section. Furthermore, at the high neutrino energies needed for charged current

𝜈𝜇 scattering to occur, the allowed approximation is expected to be inadequate. Therefore,

only charged current 𝜈𝑒 scattering for which 𝑓𝐶 = 𝑓EMA will be considered here.

We define the allowed approximation Coulomb correction factor 𝐹𝐶 by

𝐹𝐶 ≡
⎧{
⎨{⎩

𝐹(𝑍𝑓, 𝛽𝑓,rel) 𝑓2
EMA > 𝐹(𝑍𝑓, 𝛽𝑓,rel)

𝑓2
EMA otherwise

(3.218)

where 𝐹(𝑍𝑓, 𝛽𝑓,rel) is defined in eq. (3.187) and 𝑓EMA is evaluated in the laboratory

frame as described in eq. (3.192). The allowed approximation differential cross section for

charged current neutrino-nucleus scattering in the CM frame may now be written as

𝑑𝜎
𝑑 cos 𝜃ℓ

= 𝐺𝐹
2 |𝑉𝑢𝑑|2

2 𝜋
[(

√
𝑠 − 𝐸ℓ) 𝐸𝑖

𝑠
] 𝐹𝐶 𝐸ℓ |𝐩ℓ|

× ([1 + 𝛽ℓ cos 𝜃ℓ] 𝐵(F−) + [1 − 1
3

𝛽ℓ cos 𝜃ℓ] 𝐵(GT−)). (CM frame, 3.219)

where it has been noted that 𝐸𝑓 =
√

𝑠 − 𝐸ℓ in the CM frame. The total cross section 𝜎
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is obtained by integrating eq. (3.219) over cos 𝜃ℓ ∈ [−1, 1], yielding

𝜎 = 𝐺𝐹
2 |𝑉𝑢𝑑|2

𝜋
[(

√
𝑠 − 𝐸ℓ) 𝐸𝑖

𝑠
] 𝐹𝐶 𝐸ℓ |𝐩ℓ| [𝐵(F−) + 𝐵(GT−)]. (CM frame, 3.220)

3.12 Extension to charged current antineutrino scattering

The differential cross section for charged current antineutrino-nucleus scattering may also

be calculated using the formalism developed in the previous sections. To do so, first con-

sider the Lorentz-invariant amplitude ℳ for charged current scattering of an antineutrino

on a free up quark. At tree level, the amplitude is given by

𝑖ℳ =
𝑞

𝑊

̄𝜈ℓ

ℓ+

𝑢

𝑑

= −𝑔2 𝑉𝑢𝑑
8

ℓ𝜇 𝑃 𝜇𝜈
𝑊 �̄�𝑑(𝑝𝑑)𝛾𝜈(1 − 𝛾5)𝑢𝑢(𝑝𝑢), (3.221)

where

ℓ𝜇 = ̄𝑣 ̄𝜈ℓ
(𝑝 ̄𝜈ℓ

) 𝛾𝜇(1 − 𝛾5) 𝑣ℓ(𝑝ℓ) (3.222)

is the leptonic matrix element for antineutrino charged current scattering, and the other

factors are defined as in eq. (3.3). Taking the low-energy limit of the 𝑊 boson propagator

as was done in eq. (3.5) leads to the diagram

𝑖ℳ =

̄𝜈ℓ

ℓ+ 𝑑

𝑢

= −𝑖 𝐺𝐹 𝑉𝑢𝑑√
2

ℓ𝜇 �̄�𝑑(𝑝𝑑)𝛾𝜇(1 − 𝛾5)𝑢𝑢(𝑝𝑢). (3.223)

Comparing eqs. (3.6) and (3.223), one finds that the quark matrix element for the

antineutrino case is the complex conjugate of that for the neutrino case, i.e.,

�̄�𝑑(𝑝𝑑)𝛾𝜇(1 − 𝛾5)𝑢𝑢(𝑝𝑢) = [�̄�𝑢(𝑝𝑢)𝛾𝜇(1 − 𝛾5)𝑢𝑑(𝑝𝑑)]
∗
. (3.224)
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For any general bilinear of Dirac spinors �̄�2 𝑀 𝑤1, where 𝑤 ∈ {𝑢, 𝑣} and 𝑀 is an arbitrary

4×4 matrix, the complex conjugate of the bilinear is given by [49]

(�̄�2 𝑀 𝑤1)∗ = �̄�1 �̄� 𝑤2 (3.225)

where �̄� = 𝛾0 𝑀† 𝛾0 is the Dirac adjoint of 𝑀.

Therefore, when considering the diagram describing antineutrino-nucleon scattering,

𝑖ℳ =

̄𝜈ℓ

ℓ+ 𝑁𝑓

𝑁𝑖

= −𝑖 𝐺𝐹 𝑉𝑢𝑑√
2

ℓ𝜇n𝜇. (3.226)

the free nucleon matrix element n𝜇 will have the same form as in eq. (3.30) except for

two needed changes. First, one must take the Dirac adjoint of the quantity in square

brackets in order to account for the complex conjugation of the quark matrix element

relative to the matter neutrino case. Making this change is equivalent to the substitutions

𝐹2(𝑄2) → −𝐹2(𝑄2) and 𝐺𝑃(𝑄2) → −𝐺𝑃(𝑄2). Second, one must make the substitution

𝑡− → 𝑡+ in order to switch from a 𝑛 → 𝑝 transition to a 𝑝 → 𝑛 transition in the isospin

representation. Explicitly, for the antineutrino charged current case, the free nucleon

matrix element n𝜇 is given by

n𝜇 = 𝜒†
𝑁𝑓

�̄�𝑁𝑓
(𝑝𝑁𝑓

)[𝛾𝜇𝐹1(𝑄2) − 𝑖
2𝑚𝑁

𝜎𝜇𝜈𝑞𝜈 𝐹2(𝑄2) + 𝑞𝜇

𝑚𝑁
𝐹3(𝑄2)

−𝛾𝜇𝛾5 𝐺𝐴(𝑄2) + 𝑞𝜇

𝑚𝑁
𝛾5 𝐺𝑃(𝑄2) + 𝑖

𝑚𝑁
𝜎𝜇𝜈𝑞𝜈 𝛾5 𝐺3(𝑄2)]𝑡+ 𝑢𝑁𝑖

(𝑝𝑁𝑖
) 𝜒𝑁𝑖

. (3.227)

To calculate the elements of the reduced nuclear matrix element tensor O𝜇𝜈 (see

eq. (3.148)) for charged current antineutrino scattering, one need only make the same

substitutions, i.e., 𝐹2(𝑄2) → −𝐹2(𝑄2), 𝐺𝑃(𝑄2) → −𝐺𝑃(𝑄2), and 𝑡− → 𝑡+ wherever

these quantities appear in the equations describing the neutrino-nucleus case.

For antineutrinos, the lepton tensor L𝜇𝜈 defined in eq. (3.101) may be expressed in

Cartesian coordinates using the same expression as the neutrino case (see eq. (3.104))
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except for a change in the sign of the last term:

L𝜇𝜈 = 4 [𝑝𝜇
ℓ 𝑝𝜈

̄𝜈ℓ
+ 𝑝𝜈

ℓ 𝑝𝜇
̄𝜈ℓ

− 𝑔𝜇𝜈 (𝑝ℓ ⋅ 𝑝 ̄𝜈ℓ
) + 𝑖𝜖𝜇𝜈𝜌𝜎 𝑝ℓ,𝜌 𝑝 ̄𝜈ℓ,𝜎] . (3.228)

The expressions for the spherical components of the lepton tensor in eqs. (3.118)–(3.120)

may be used for the antineutrino case if the substitution 𝑖 → −𝑖 is made for L𝑀�0
, the

substitution 𝐾𝑀𝑁 → −𝐾𝑀𝑁 is made for L𝑀𝑁, and the subscript 𝜈ℓ is replaced by ̄𝜈ℓ

everywhere. The simplified expressions for the lepton tensor in eqs. (3.152)–(3.159) may

be used for antineutrinos if the subscript substitution 𝜈ℓ → ̄𝜈ℓ is made, which changes the

lepton number factor to 𝐿 ̄𝜈ℓ
= −1.

With all of the adjustments mentioned above, the derivation of the first-order and

allowed approximation cross sections for charged current antineutrino-nucleus scattering

proceeds in the same manner as in the neutrino case. The allowed approximation cross

section turns out to be exactly the same as in eqs. (3.219)–(3.220) except that (1) the

reduced nuclear matrix elements 𝐵(F+) and 𝐵(GT+) both contain the isospin raising

operator 𝑡+ instead of 𝑡−, and (2) the Coulomb correction factor 𝐹𝐶 from eq. (3.218)

should now be redefined as

𝐹𝐶 ≡
⎧{
⎨{⎩

𝐹(𝑍𝑓, 𝛽𝑓,rel) 𝑓2
EMA < 𝐹(𝑍𝑓, 𝛽𝑓,rel)

𝑓2
EMA otherwise.

(3.229)

3.13 Extension to neutral current scattering

The Standard Model describes the neutral current interaction using the Lagrangian den-

sity

ℒ𝑍 = 𝑔
cos 𝜃𝑊

[𝐽3
𝜇 − sin2(𝜃𝑊) 𝐽EM

𝜇 ] 𝑍𝜇, (3.230)

where 𝑍𝜇 is the 𝑍 boson field and 𝑔 is the SU(2) gauge coupling constant. The weak

mixing angle 𝜃𝑊 is related to the masses of the 𝑊 and 𝑍 bosons via

cos 𝜃𝑊 = 𝑚𝑊
𝑚𝑍

. (3.231)

The weak neutral current 𝐽3
𝜇 and the electromagnetic current 𝐽EM

𝜇 are given by

𝐽3
𝜇 = 1

2
∑

𝐹
𝐼3

𝐹
̅𝐹 𝛾𝜇(1 − 𝛾5) 𝐹 (3.232)
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and

𝐽EM
𝜇 = ∑

𝐹
𝑞𝐹

̅𝐹 𝛾𝜇 𝐹, (3.233)

where the sums are over all fundamental fermion fields33 𝐹 included in the Standard

Model, and 𝑞𝐹 (𝐼3
𝐹) is the electric charge (third component of weak isospin34) of the

particle associated with the 𝐹 field (see table 3.1).

The Lorentz-invariant amplitude ℳ for neutral current scattering of a neutrino on a

free quark Q (of arbitrary flavor) may be computed at tree-level using the diagram

𝑖ℳ =
𝑞

𝑍

𝜈ℓ,𝑖

𝜈ℓ,𝑓

Q𝑖

Q𝑓

= − 𝑔2

4 cos2 𝜃𝑊
�̄�𝜈ℓ,𝑓

(𝑝𝜈ℓ,𝑓
) 𝛾𝜇 (𝑔𝜈

𝑉 − 𝑔𝜈
𝐴 𝛾5) 𝑢𝜈ℓ,𝑖

(𝑝𝜈ℓ,𝑖
)

× 𝑃 𝜇𝜈
𝑍 �̄�Q𝑓

(𝑝Q𝑓
) 𝛾𝜈(𝑔Q

𝑉 − 𝑔Q
𝐴 𝛾5)𝑢Q𝑖

(𝑝Q𝑖
), (3.234)

where

𝑃 𝜇𝜈
𝑍 = 𝑖

−𝑔𝜇𝜈 + 𝑞𝜇𝑞𝜈

𝑚2
𝑍

𝑞2 − 𝑚2
𝑍 + 𝑖𝜖

(3.235)

is the 𝑍 boson propagator. The vector 𝑔𝐹
𝑉 and axial-vector 𝑔𝐹

𝐴 coupling constants for

neutral current interactions between fermion fields are given by

𝑔𝐹
𝑉 = 𝐼3

𝐹 − 2 𝑞𝐹 sin2 𝜃𝑊 (3.236)

and

𝑔𝐹
𝐴 = 𝐼3

𝐹. (3.237)

Note that the flavor of the struck quark is conserved in this interaction, i.e., Q𝑖 and Q𝑓

have the same flavor.
33These may be expressed using either weak-eigenstate or mass-eigenstate fields since the unitary

transformation that connects the two bases cancels out in the combination ̅𝐹𝐹 [59].
34Not to be confused with (strong) isospin
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Fermions 𝐹 Electric charge 𝑞𝐹 Weak isospin 𝐼3
𝐹

𝜈𝑒, 𝜈𝜇, 𝜈𝜏 0 1/2

𝑒−, 𝜇−, 𝜏− -1 -1/2

𝑢, 𝑐, 𝑡 2/3 1/2

𝑑, 𝑠, 𝑏 -1/3 -1/2

Table 3.1: Quantities needed to compute the vector 𝑔𝐹
𝑉 and 𝑔𝐹

𝐴 axial-vector coupling
constants for neutral current scattering amplitudes.

As was the case for charged current neutrino scattering, it is adequate to approximate

the propagator for the intermediate vector boson by its low-energy limit:

𝑃 𝜇𝜈
𝑍 ≈ 𝑖 𝑔𝜇𝜈

𝑚2
𝑍

. (3.238)

In this limit, the diagram shown in eq. (3.234) becomes

𝑖ℳ =

𝜈ℓ,𝑖

𝜈ℓ,𝑓 Q𝑓

Q𝑖

= −𝑖 𝐺𝐹√
2

ℓ𝜇 �̄�Q𝑓
(𝑝Q𝑓

) 𝛾𝜇(𝑔Q
𝑉 − 𝑔Q

𝐴 𝛾5) 𝑢Q𝑖
(𝑝Q𝑖

), (3.239)

where the Fermi constant 𝐺𝐹 is given by

𝐺𝐹√
2

= 𝑔2

8𝑚2
𝑊

= 𝑔2

8𝑚2
𝑍 cos2 𝜃𝑊

, (3.240)

and the neutrino neutral current leptonic matrix element is given by

ℓ𝜇 = �̄�𝜈ℓ,𝑓
(𝑝𝜈ℓ,𝑓

) 𝛾𝜇 (1 − 𝛾5) 𝑢𝜈ℓ,𝑖
(𝑝𝜈ℓ,𝑖

). (3.241)

To transition to neutrino-nucleon scattering, one must once again replace the quark

part of the amplitude ℳ with a hadronic matrix element n𝜇:

�̄�Q𝑓
(𝑝Q𝑓

) 𝛾𝜇(𝑔Q
𝑉 − 𝑔Q

𝐴 𝛾5) 𝑢Q𝑖
(𝑝Q𝑖

) → n𝜇 (3.242)
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After making this substitution, the diagram in eq. (3.239) becomes

𝑖ℳ =

𝜈ℓ,𝑖

𝜈ℓ,𝑓 𝑁𝑓

𝑁𝑖

= −𝑖 𝐺𝐹√
2

ℓ𝜇n𝜇. (3.243)

Since the leptonic matrix element ℓ𝜇 for neutrino neutral current scattering has the

same form as that for neutrino charged current scattering (compare eqs. (3.8) and (3.241)),

it follows that eqs. (3.118)–(3.120) may be used to calculate the spherical components

of the neutrino neutral current lepton tensor L𝜇𝜈 as long as one makes the substitutions

𝜈ℓ → 𝜈ℓ,𝑖 and ℓ → 𝜈ℓ,𝑓. The simplified forms given in terms of the final lepton scattering

angle from eqs. (3.152)–(3.159) may also be used with the same substitutions.

Symmetry arguments similar to those mentioned in section 3.2 lead to the following

form [59] for the neutral current free nucleon matrix element n𝜇:

n𝜇 = 𝜒†
𝑁𝑓

�̄�𝑁𝑓
(𝑝𝑁𝑓

)[𝛾𝜇𝐹 𝑍
1 (𝑄2) + 𝑖

2𝑚𝑁
𝜎𝜇𝜈𝑞𝜈 𝐹 𝑍

2 (𝑄2) + 𝑞𝜇

𝑚𝑁
𝐹 𝑍

3 (𝑄2)

−𝛾𝜇𝛾5 𝐺𝑍
𝐴(𝑄2) − 𝑞𝜇

𝑚𝑁
𝛾5 𝐺𝑍

𝑃(𝑄2) + 𝑖
𝑚𝑁

𝜎𝜇𝜈𝑞𝜈 𝛾5 𝐺𝑍
3 (𝑄2)] 𝑢𝑁𝑖

(𝑝𝑁𝑖
) 𝜒𝑁𝑖

. (3.244)

Note that this expression is identical to the form of n𝜇 for neutrino charged current

scattering (see eq. (3.30)) except that the isospin-lowering operator 𝑡− has been removed,35

and the neutral current form factors 𝐹 𝑍
1 (𝑄2), 𝐺𝑍

𝐴(𝑄2), etc. have replaced their charged

current counterparts. Therefore, by analogy with the procedure shown in section 3.4, we

may define the momentum-space free nucleon transition operator j𝜇 for neutral current

scattering using the same expressions as in the neutrino charged current case but with

the substitution 𝑡− → 1 and with the neutral current nucleon form factors substituted for

the charged current ones. That is, one must make the substitutions 𝐹𝑋(𝑄2) → 𝐹 𝑍
𝑋(𝑄2)

and 𝐺𝑌(𝑄2) → 𝐺𝑍
𝑌 (𝑄2) for all 𝑋 ∈ {1, 2, 3} and 𝑌 ∈ {𝐴, 𝑃 , 3} in eqs. (3.77) and (3.78).

35As we shall see, however, the Pauli operator for the third isospin component, 𝜏3, will appear in the
isovector pieces of the neutral current form factors.

111



It can be shown [59] that the neutral current form factors may be written in terms of

the charged current ones defined in eqs. (3.124)–(3.131) according to the relations

𝐹 𝑍𝑁
𝑖 (𝑄2) = ±1

2
𝐹𝑖(𝑄2) − 2 sin2(𝜃𝑊) 𝐹 𝑁

𝑖 (𝑄2) − 1
2

𝐹 𝑠𝑁
𝑖 (𝑄2) (3.245)

𝐺𝑍𝑁
𝑗 (𝑄2) = ±1

2
𝐺𝑗(𝑄2) − 1

2
𝐺𝑠𝑁

𝑗 (𝑄2) (3.246)

where 𝑖 ∈ {1, 2}, 𝑗 ∈ {𝐴, 𝑃}, the nucleon type 𝑁 ∈ {𝑝, 𝑛}, and + (−) should be chosen

for 𝑁 = 𝑝 (𝑁 = 𝑛).

The 𝐹 𝑠𝑁
𝑖 (𝑄2) and 𝐺𝑠𝑁

𝑗 (𝑄2) are the strange form factors. They arise because the 𝑍

boson that mediates the neutral weak interaction can couple to both the valence quarks

and the sea quarks within the nucleon. It is believed that virtual 𝑠 ̄𝑠 pairs in the sea make

the dominant contribution [59]. As in the charged current case, the second-class form

factors 𝐹 𝑍
3 (𝑄2) and 𝐺𝑍

3 (𝑄2) are typically taken to be zero. They will be included in the

following discussion for completeness.

To obtain expressions for the neutral current form factors suitable for use in the isospin

representation, first define the isospin projection operators:

𝑃𝑛 ≡ 1
2

(1 + 𝜏3) 𝑃𝑝 ≡ 1
2

(1 − 𝜏3). (3.247)

These operators act on neutron and proton states to give

𝑃𝑛 |𝑛⟩ = |𝑛⟩ 𝑃𝑛 |𝑝⟩ = 0 (3.248)

𝑃𝑝 |𝑛⟩ = 0 𝑃𝑝 |𝑝⟩ = |𝑝⟩ . (3.249)

Since the form factors appear within the free nucleon matrix element (and thus may be

taken to act on the initial nucleon state vector), it follows from eqs. (3.245) and (3.246)

that they may be rewritten in terms of these operators as

𝐹 𝑍
𝑖 (𝑄2) = −1

2
𝜏3 𝐹𝑖(𝑄2) − 2 sin2(𝜃𝑊) [𝐹 𝑛

𝑖 (𝑄2) 𝑃𝑛 + 𝐹 𝑝
𝑖 (𝑄2) 𝑃𝑝]

−1
2

[𝐹 𝑠𝑛
𝑖 (𝑄2) 𝑃𝑛 + 𝐹 𝑠𝑝

𝑖 (𝑄2) 𝑃𝑝] (3.250)
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𝐺𝑍
𝑗 (𝑄2) = −1

2
𝜏3 𝐺𝑗(𝑄2) − 1

2
[𝐺𝑠𝑛

𝑗 (𝑄2) 𝑃𝑛 + 𝐺𝑠𝑝
𝑗 (𝑄2) 𝑃𝑝] . (3.251)

Plugging in the explicit forms for the isospin projection operators from eq. (3.247) allows

one to write

𝐹 𝑍
𝑖 (𝑄2) = 𝐹 𝑍

𝑖𝐼(𝑄2) + 𝐹 𝑍
𝑖𝜏3

(𝑄2) 𝜏3 (3.252)

𝐺𝑍
𝑗 (𝑄2) = 𝐺𝑍

𝑗𝐼(𝑄2) + 𝐺𝑍
𝑗𝜏3

(𝑄2) 𝜏3 (3.253)

where the isoscalar neutral current form factors are given by

𝐹 𝑍
𝑖𝐼(𝑄2) = −1

4
[𝐹 𝑠𝑛

𝑖 (𝑄2) + 𝐹 𝑠𝑝
𝑖 (𝑄2)] − sin2(𝜃𝑊) [𝐹 𝑛

𝑖 (𝑄2) + 𝐹 𝑝
𝑖 (𝑄2)] (3.254)

𝐺𝑍
𝑗𝐼(𝑄2) = −1

4
[𝐺𝑠𝑛

𝑗 (𝑄2) + 𝐺𝑠𝑝
𝑗 (𝑄2)] (3.255)

and the isovector neutral current form factors are given by

𝐹 𝑍
𝑖𝜏3

(𝑄2) = sin2(𝜃𝑊) [𝐹 𝑝
𝑖 (𝑄2) − 𝐹 𝑛

𝑖 (𝑄2)] − 1
2

𝐹𝑖(𝑄2) + 1
4

[𝐹 𝑠𝑝
𝑖 (𝑄2) − 𝐹 𝑠𝑛

𝑖 (𝑄2)] (3.256)

𝐺𝑍
𝑗𝜏3

(𝑄2) = 1
4

[𝐺𝑠𝑝
𝑗 (𝑄2) − 𝐺𝑠𝑛

𝑗 (𝑄2)] − 1
2

𝐺𝑗(𝑄2). (3.257)

With the replacement 𝑡− → 1 and the neutral current form factors substituted for

the corresponding charged current ones, the derivation of the nuclear part of the cross

section proceeds in the same way as in the neutrino charged current case until just after

eqs. (3.169) and (3.170). In order to write expressions similar to eqs. (3.171) and (3.172)

for the neutral current case, first define the isoscalar and isovector pieces of the neutral

current G form factors:

G𝑍
𝜇 (𝑄2) = G𝑍

𝜇𝐼(𝑄2) + G𝑍
𝜇𝜏3

(𝑄2) (3.258)

G𝑍
�0𝑏(𝑄

2) ≡ 𝜅
𝑚𝑁

[ 𝑞�0

2𝑚𝑁
𝐺𝑍

𝑃𝑏(𝑄2) − 1
2

𝐺𝑍
𝐴𝑏(𝑄2) − 𝐺𝑍

3𝑏(𝑄2)] (3.259)

G𝑍
𝑀𝑏(𝑄2) ≡ 𝜅

𝑚𝑁
[𝑀 𝐹 𝑍

1𝑏(𝑄2) − 𝐹 𝑍
2𝑏(𝑄2)

2𝑚𝑁
− 𝐺𝑍

𝐴𝑏(𝑄2) + 𝜅2

2𝑚2
𝑁

𝛿𝑀0 𝐺𝑍
𝑃𝑏(𝑄2)] . (3.260)
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where 𝜇 ∈ {��0, −1, 0, 1}, 𝑀 ∈ {−1, 0, 1}, and 𝑏 ∈ {𝐼, 𝜏3}. Then the elements of the reduced

nuclear matrix element tensor O𝜇𝜈 may be calculated for neutral current scattering via

⟨𝐽𝑓 ∥ �̂��0(𝐽) ∥ 𝐽𝑖⟩ = 𝑅�0(𝐼) + 𝑅�0(𝜏3) (3.261)

⟨𝐽𝑓 ∥ �̂�𝑀(𝐽) ∥ 𝐽𝑖⟩ = 𝑅𝑀(𝐼) + 𝑅𝑀(𝜏3) (3.262)

(3.263)

where

𝑅�0(Θ) ≡ 𝐹 𝑍
1Θ(𝑄2)N 𝑉

𝐽 (Θ) − 𝐺𝑍
𝐴Θ(𝑄2)
𝑚𝑁

N𝐴
𝐽 (Θ) + G𝑍

�0Θ(𝑄2)N𝐴
𝐽0(Θ), (3.264)

𝑅𝑀(Θ) ≡ 𝛿𝑀0 𝜅
𝑚𝑁

[1
2

𝐹 𝑍
1Θ(𝑄2) + 𝐹 𝑍

3Θ(𝑄2)] N 𝑉
𝐽 (Θ)

+ 𝐹 𝑍
1Θ(𝑄2)
𝑚𝑁

N 𝑉
𝐽𝑀(Θ) + G𝑍

𝑀Θ(𝑄2)N𝐴
𝐽𝑀(Θ), (3.265)

𝐼 is the identity operator in isospace, Θ ∈ {𝐼, 𝜏3}, and the four basic nuclear matrix

elements N are given in eqs. (3.173)–(3.176).

To first order in 1/𝑚𝑁 and neglecting the neutrino masses, the neutral current neutrino-

nucleus differential cross section may be written in the form

𝑑𝜎
𝑑 cos 𝜃ℓ

=
∣ℳ∣2

32 𝜋 𝑠
𝐸𝜈ℓ,𝑓

𝐸𝜈ℓ,𝑖

. (CM frame, 3.266)

where ∣ℳ∣2 is given in eq. (3.149) with the substitution |𝑉𝑢𝑑|2 → 1. The elements of

the reduced nuclear matrix element tensor O𝜇𝜈 defined in eq. (3.148) may be computed

using eqs. (3.173)–(3.176) together with eqs. (3.261)–(3.265), and the elements of the

lepton tensor L𝜇𝜈 may be evaluated in terms of cos 𝜃𝜈ℓ,𝑓
using eqs. (3.152)–(3.159) with

the substitutions 𝜈ℓ → 𝜈ℓ,𝑖 and ℓ → 𝜈ℓ,𝑓.

Just as in the charged current case, when the allowed approximation is applied to the

calculation of the neutral current cross section, the only terms that survive in the free

nucleon transition operator j𝜇 are those that are proportional to the 𝑄2 → 0 limit of the
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vector 𝐹 𝑍
1 (𝑄2) and axial-vector 𝐺𝑍

𝐴(𝑄2) form factors. In this limit, these two form factors

may be written as

𝐹 𝑍
1 (0) = 𝑔𝑉 [(𝜏3 − 1) sin2(𝜃𝑊) − 1

2
𝜏3] (3.267)

𝐺𝑍
𝐴(0) = −1

2
[𝑔𝐴 𝜏3 + 𝐺𝑠

𝐴(0)] (3.268)

where 𝐺𝑠
𝐴(0) is the strange axial form factor of the nucleon evaluated at zero momentum

transfer. In the zero momentum transfer limit 𝑄2 → 0, the strange vector form factor

𝐹 𝑠
1 (𝑄2) must vanish because the nucleon has no net strangeness. This form factor has

therefore been neglected in eq. (3.267).

The strange axial form factor 𝐺𝑠
𝐴(𝑄2) is currently not well understood. The available

experimental data favor a small negative value 𝐺𝑠
𝐴(0) ≈ −0.1, while theoretical calcula-

tions give a value closer to zero [205]. Future measurements by neutrino experiments like

MicroBooNE may be capable of improving the existing constraints [289]. Because the

contribution of 𝐺𝑠
𝐴(𝑄2) to the neutral current axial form factor 𝐺𝑍

𝐴(𝑄2) is expected to be

small in the limit of zero momentum transfer, we will make the approximation 𝐺𝑠
𝐴(0) ≈ 0

in the following calculations.

Under the allowed approximation (and neglecting sea quark contributions), the com-

ponents of the position-space free nucleon transition operator for neutral current neutrino

scattering become

̂𝒪�0(𝑘) = ∑
𝐽

̂𝒪�0(𝑘, 𝐽) ⟶ ̂𝒪�0(𝑘, 0) = 𝑔𝑉 [(𝜏3(𝑘) − 1) sin2(𝜃𝑊) − 1
2

𝜏3(𝑘)] (3.269)

̂𝒪𝑀(𝑘) = ∑
𝐽

̂𝒪𝑀(𝑘, 𝐽) ⟶ ̂𝒪𝑀(𝑘, 1) = 1
2

𝑔𝐴 𝜎𝑀(𝑘) 𝜏3(𝑘). (3.270)

The components of the reduced nuclear matrix element tensor O𝜇𝜈 become

O�0�0 ⟶ M𝑍
𝐹 ≡ 𝑔2

𝑉 ∣⟨𝐽𝑓 ∥
𝐴

∑
𝑘=1

[(𝜏3(𝑘) − 1) sin2(𝜃𝑊) − 1
2

𝜏3(𝑘)] ∥ 𝐽𝑖⟩∣
2

(3.271)

O�00 ⟶ 0 (3.272)

O𝑀𝑀 ⟶ M𝑍
𝐺𝑇 ≡ 𝑔2

𝐴
12

∣⟨𝐽𝑓 ∥
𝐴

∑
𝑘=1

𝝈(𝑘) 𝜏3(𝑘) ∥ 𝐽𝑖⟩∣
2

(3.273)
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Since 𝜏3 |𝑛⟩ = + |𝑛⟩ and 𝜏3 |𝑝⟩ = − |𝑝⟩, the sum in eq. (3.271) may be evaluated to obtain

M𝑍
𝐹 = 1

4
𝑔2

𝑉 𝑄2
𝑊 ∣⟨𝐽𝑓 ∥ 𝟏 ∥ 𝐽𝑖⟩∣2, (3.274)

where the weak nuclear charge 𝑄𝑊 for a nucleus with neutron number 𝑁 and proton

number 𝑍 is given by

𝑄𝑊 = 𝑁 − [1 − 4 sin2(𝜃𝑊)] 𝑍. (3.275)

For massless neutrinos, the quantity ∣𝒯𝑓𝑖∣
2 in this limit is given by

∣𝒯𝑓𝑖∣
2 ≈ 4 𝐸𝜈ℓ,𝑖

𝐸𝜈ℓ,𝑓
(M𝑍

𝐹 [1 + cos 𝜃𝜈ℓ,𝑓
] + M𝑍

𝐺𝑇 [3 − cos 𝜃𝜈ℓ,𝑓
]). (3.276)

The spin-summed squared amplitude ∣ℳ∣2 becomes

∣ℳ∣2 ≈ 4 𝐺𝐹
2 𝐸𝑖 𝐸𝑓 𝐸𝜈ℓ,𝑖

𝐸𝜈ℓ,𝑓
(𝑄2

𝑊 𝐵(F3) [1 + cos 𝜃𝜈ℓ,𝑓
] + 𝐵(GT3) [1 − 1

3
cos 𝜃𝜈ℓ,𝑓

]),

(3.277)

where the neutral current reduced Fermi and Gamow-Teller matrix elements 𝐵(F3) and

𝐵(GT3) are given in the position-space representation by

𝐵(F3) ≡
𝑔2

𝑉 ∣⟨𝐽𝑓 ∥ 𝟏 ∥ 𝐽𝑖⟩∣2

2𝐽𝑖 + 1
(3.278)

and

𝐵(GT3) ≡
𝑔2

𝐴 ∣⟨𝐽𝑓 ∥ ∑𝐴
𝑘=1 𝝈(𝑘) 𝜏3(𝑘) ∥ 𝐽𝑖⟩∣

2

2𝐽𝑖 + 1
. (3.279)

These reduced matrix elements obey the same selection rules as in the charged current case

(see eqs. (3.215)–(3.216)). No final-state Coulomb correction is needed for the neutral

current case since the final-state lepton is a neutrino, which is electrically neutral. Using

eqs. (3.65) and (3.277), one may write the allowed approximation differential cross section

for neutral current neutrino nucleus scattering in the form

𝑑𝜎
𝑑 cos 𝜃ℓ

= 𝐺𝐹
2

8 𝜋
[

(
√

𝑠 − 𝐸𝜈ℓ,𝑓
) 𝐸𝑖

𝑠
] 𝐸2

𝜈ℓ,𝑓

× ([1 + cos 𝜃𝜈ℓ,𝑓
] 𝑄2

𝑊 𝐵(F3) + [1 − 1
3

cos 𝜃𝜈ℓ,𝑓
] 𝐵(GT3))

(CM frame, 3.280)
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where 𝜃𝜈ℓ,𝑓
is the angle between the final neutrino 3-momentum and the incident neutrino

3-momentum. Integrating eq. (3.280) over cos 𝜃𝜈ℓ,𝑓
∈ [−1, 1] gives the total cross section

𝜎 = 𝐺𝐹
2

4 𝜋
[

(
√

𝑠 − 𝐸𝜈ℓ,𝑓
) 𝐸𝑖

𝑠
] 𝐸2

𝜈ℓ,𝑓
[𝑄2

𝑊 𝐵(F3) + 𝐵(GT3)]. (CM frame, 3.281)

For neutral current scattering, n𝜇 is the same for both neutrinos and antineutrinos.

However, since the leptonic matrix element is given by

ℓ𝜇 = ̄𝑣 ̄𝜈ℓ,𝑖
(𝑝 ̄𝜈ℓ,𝑖

) 𝛾𝜇 (1 − 𝛾5) 𝑣 ̄𝜈ℓ,𝑓
(𝑝 ̄𝜈ℓ,𝑓

) (3.282)

for the case of antineutrino neutral current scattering, it follows that one should use

the same lepton tensor as in the antineutrino charged current case (see eq. (3.228) and

the discussion immediately following it) but with the substitutions ̄𝜈ℓ → ̄𝜈ℓ,𝑖 and ℓ →

̄𝜈ℓ,𝑓. Under the allowed approximation, the neutral current differential cross section for

antineutrino-nucleus scattering is the same as that for the neutrino-nucleus case.

It is instructive to note that, since 𝐵(F) in the neutral current case contains the re-

duced matrix element of the identity operator (see eq. (3.278)), it is nonvanishing only

when the initial and final nuclear states are identical. The 𝐵(F) terms in eqs. (3.280)

and (3.281) therefore represent the allowed approximation cross section for coherent elas-

tic neutrino-nucleus scattering, a reaction whose existence was first predicted theoretically

[290] by Freedman in 1974 and confirmed experimentally [291] by the COHERENT col-

laboration in 2017.
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Chapter 4

Nuclear de-excitation model

After an initial neutrino-nucleus scattering reaction, the final-state nucleus may emit one

or more particles as it loses any available excess energy. In order to correctly reconstruct

the energy of the original neutrino, the experimentalist must account for this excess energy

by detecting the particles from the nuclear de-excitations. While it is straightforward (at

least in principle) to measure the energies of de-excitation 𝛾-rays and charged nuclear

fragments, it is often much more difficult to account for energy lost to emitted neutrons.

An additional complication arises because, for all but the lightest nuclei, the average

binding energy per nucleon is roughly 8 MeV. Thus, if one fails to determine that a

low-energy neutrino scattering event involved the emission of a nucleon or a light ion, the

missing binding energy will create a significant systematic error on the neutrino energy

measurement. This error will persist even with perfect reconstruction of all final-state

particle kinetic energies. A realistic model of the nuclear de-excitations that may occur in

response to low-energy neutrino scattering would therefore be helpful to experimentalists

attempting to characterize the response of a detector to neutrinos. This chapter discusses

the creation of such a model using a combination of nuclear data and semi-empirical

formulae describing global nuclear structure properties.

4.1 Compound nuclear reactions

Nuclear reactions are often modeled as proceeding via one of two idealized general mech-

anisms. In a direct reaction, the incident projectile strikes a single nucleon or a few
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nucleons near the nuclear surface. The reaction products leave the nucleus quickly (per-

haps within 10−22 s or so), without experiencing additional collisions on their way out.

Compound-nucleus reactions, on the other hand, occur when a projectile scatters on the

nucleus with a small impact parameter. The struck particles within the nucleus rescatter

many times, creating a relatively long-lived (roughly on the order of 10−18 to 10−16 s)

state of thermal equilibrium that persists until random fluctuations concentrate enough

energy on a nucleon or a light nuclear fragment for it to escape [292, 293].

To the extent that nuclear de-excitations induced by low-energy neutrino scattering

are considered in the theoretical literature at all, it is usually assumed that it is adequate

to model the neutrino-nucleus scattering process at low energies as proceeding via the

formation of a compound nucleus [200, 294–301]. One may possibly justify this approach

by noting that neutrinos with energies of tens-of-MeV or lower have de Broglie wavelengths

that are considerably longer than a typical nuclear diameter.1 At these energies, then,

the incident neutrino does not “see’’ individual nucleons but instead may be thought of

as interacting with the nucleus as a whole. One might therefore expect the contribution

of direct neutrino-nucleus reactions to the total cross section to be relatively unimportant

in this energy range.

Although the available neutrino-nucleus scattering data are too limited2 to provide

a meaningful constraint on possible direct reaction channels in the tens-of-MeV energy

range, the results of electron scattering experiments may shed light on the validity of

the compound nucleus assumption in the neutrino case. For example, experimental mea-

surements by Flowers et al. in 1978 found that the energy spectra of alpha particles

(shown in fig. 4.1) produced in 60Ni(𝑒, 𝛼)𝑒′𝑋 scattering reactions were well-described by

a broad peak predicted by a compound nuclear decay model and a small high-energy “tail’’

attributable to direct reactions [302]. As expected, the tail representing the direct reac-

tion contribution to the alpha spectrum was obvious in the data for 120 MeV electrons,
1For example, a 50 MeV neutrino has a de Broglie wavelength of about 25 fm, while an 𝐴 = 40

nucleus has a diameter of roughly 8 fm.
2In the energy regime of interest for supernova neutrinos, the only cross section measurements with

~10–20% uncertainties to date are for 12C [156]. The existing measurements do not include cross sections
for processes that involve the emission of nuclear fragments, so they cannot be used to determine the
relative contributions of direct and compound reaction mechanisms.
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Figure 4.1: Measurement by Flowers et al. [302] of the energy spectra of alpha particles
emitted in 60Ni(𝑒, 𝛼)𝑒′𝑋 reactions at 𝜃𝛼 = 90°. Data were obtained for electron energies
of 120 MeV (curve A, upper left-hand scale), 60 MeV (curve B, right-hand scale), and

33 MeV (curve C, lower left-hand scale). The solid lines show predicted spectra
obtained using a compound nucleus model. Angular distribution measurements (not

shown here) were made at the mean energies marked by the vertical dashed lines.

less prominent for 60 MeV electrons, and essentially absent for 33 MeV electrons. The

evidence provided by these results for the formation of compound nuclear states by a tens-

of-MeV leptonic projectile lends greater plausibility to the naïve de Broglie wavelength

argument presented earlier.

At present, published theoretical investigations of the relative importance of direct

and compound processes in low energy neutrino scattering appear to be limited to a

pair of studies published in 2009 and 2011 by Kim and Cheoun [303, 304]. For tens-

of-MeV neutrino scattering on 12C, they estimated that the direct contribution to the

cross sections is a factor of a few smaller than the compound contribution. From this

result, they concluded that, “the direct . . . processes might have effects small enough

to be neglected’’ [304]. Given the current dearth of both experimental and theoretical

information on this topic, MARLEY assumes, as a first approximation, that low-energy
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neutrino scattering will always result in the formation of a compound nucleus.

The notion of a compound nucleus was first introduced by Niels Bohr in the mid

nineteen thirties. Prompted by neutron bombardment experiments performed by Enrico

Fermi and others [305], Bohr proposed in a series of three papers [306–308] between 1936

and 1937 that

in order to understand the typical features of nuclear transmutations initiated

by impacts of material particles it is necessary to assume that the first stage of

any such collision process consists in the formation of an intermediate semi-

stable system composed of the original nucleus and the incident particle. The

excess energy must in this state be assumed to be temporarily stored in some

complicated motions of all the particles in the compound system. [307]

On account of the strong forces which come into play between any two material

particles at the small distances in question, the coupling between the particles

of this compound system is in fact so intimate that its eventual disintegration

—whether it consists in the release of an “elementary’’ particle like a proton

or a neutron, or of a “complex’’ nuclear particle like a deuteron or an 𝛼-ray

—must be considered as a separate event, independent of the first stage of the

collision process. The final result of the collision may thus be said to depend on

a free competition between all the various disintegration and radiation processes

of the compound system consistent with the general conservation laws. [308]

This idealized, qualitative description of nuclear scattering has become known in the

literature as the Bohr independence hypothesis [309].

For the treatment of nuclear de-excitations presented here, it is important to make

two observations about Bohr’s compound nucleus model. First, as Bohr himself noted in

his early papers, this model assumes that a compound nuclear state may be formed for

an arbitrary kinetic energy of the incident projectile. Because the allowed nuclear energy

levels, like those of any bound quantum mechanical system, are discrete, it follows that this

assumption is only valid at relatively high excitation energies where the nuclear density
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of states is large enough that it is a good approximation to treat the allowed energies as

forming a continuum. This condition is satisfied for medium and heavy compound nuclei

formed by fast neutrons [307]. It is also satisfied by other projectiles whose kinetic energies

are sufficient to create a compound state with an excitation energy that significantly

exceeds the neutron emission threshold.

Second, Bohr’s treatment assumes that the decay of the compound nucleus may be

taken to be an independent event from its formation due to thermal equilibration. Follow-

ing the initial collision, the projectile’s energy is shared so widely among the compound

system’s constituent nucleons that any “memory’’ of how the compound state was orig-

inally formed (beyond that needed to conserve energy, momentum, etc.) is lost. This

“amnesic’’ quality of the compound nucleus, namely that decays of a compound nuclear

state occur in the same way regardless of how the state was originally formed, will prove

useful for the quantitative treatment of compound nuclear decays presented in the next

section.

4.2 The Hauser-Feshbach statistical model

Shortly after Bohr proposed his compound nucleus picture of nuclear reactions, the theory

was made more quantitative in a 1937 paper [310] by Victor Weisskopf, who was among

the first to point out that one could apply statistical methods to understand the decays

of a compound nucleus. For such a nucleus, he argued,

the individual properties of the separate nuclear quantum states are then of

no interest, on account of the extremely small distance between the energy

levels of highly excited heavy nuclei; it is thus possible to obtain statistical

information on the behavior of these nuclei by averaging over many quantum

states of approximately the same energy. [310]

Weisskopf then proceeded to derive an expression for the average decay rate of a compound

nucleus within an excitation energy interval containing many nuclear levels. Later work

by Wolfenstein [311] and Hauser and Feshbach [312] refined Weisskopf’s original treat-

ment by considering the angular momentum dependence of compound nuclear decays.
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This improved theory of compound nuclei has come to be known as the Hauser-Feshbach

statistical model.

Despite its emergence when nuclear physics was still a relatively young discipline, the

Hauser-Feshbach theory (in tandem with other models) is used by modern nuclear reaction

codes like TALYS [313, 314], EMPIRE [315], CCONE [316], and CoH3 [317] to calculate

cross sections. Hauser-Feshbach calculations performed with these codes have been used

in the process of creating evaluated nuclear data libraries, such as ENDF/B-VIII.0 [318]

and JENDL-4.0 [319], that are widely used for a variety of applications.

For the present discussion, the observables of interest are the partial decay widths3 of

a compound nucleus that was formed by a neutrino interaction. In the remainder of this

section, we will derive an expression based on the Hauser-Feshbach model that can be

used to calculate these decay widths. This derivation largely follows Weisskopf’s original

chain of reasoning, with two major differences: (1) Hauser and Feshbach’s later treatment

of the effects of angular momentum and parity conservation is incorporated, and (2) the

treatment is fully relativistic.

Consider an arbitrary nucleus 𝐴 with excitation energy 𝐸𝑥,𝐴 (measured from the

ground state of 𝐴), total energy 𝐸𝐴, rest mass 𝑚𝐴, total spin 𝑠𝐴, and intrinsic parity

Π𝐴. Also consider an arbitrary projectile 𝑎 (with total energy 𝐸𝑎, rest mass 𝑚𝑎, total

spin 𝑠𝑎, and intrinsic parity 𝜋𝑎) such that 𝑎 and 𝐴 may undergo the capture reaction

𝑎 + 𝐴 → 𝐶 (4.1)

to form a compound nucleus 𝐶 with excitation energy 𝐸𝑥 (measured from the ground

state of 𝐶), total energy 𝐸, total spin 𝐽, and intrinsic parity Π. This reaction must

satisfy the conservation laws

𝐸𝑎 + 𝐸𝐴 = 𝐸 (4.2)

ℓℓℓ + 𝑠𝑠𝑠𝑎 + 𝑠𝑠𝑠𝐴 = 𝐉 (4.3)

𝜋𝑎 Π𝐴 (−1)ℓ = Π (4.4)

3Or, equivalently in natural units, the partial decay rates
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where ℓ is the orbital angular momentum of the 𝑎 + 𝐴 system. We will also make use of

the total projectile angular momentum

𝐣 ≡ ℓℓℓ + 𝑠𝑠𝑠𝑎. (4.5)

Suppose that the projectile energy 𝐸𝑎 is not precisely known, but instead lies within

a small interval [𝐸𝑎, 𝐸𝑎 + 𝑑𝐸𝑎] sufficiently large that there are many accessible states of

the compound nucleus 𝐶 that may be formed but sufficiently small that slowly varying

functions of the projectile energy (e.g., the projectile 3-momentum) may be treated as con-

stant. Imagine that 𝑎 and 𝐴 are enclosed in a large volume 𝑉. Then the energy-averaged

value (over the range of projectile energies mentioned previously) of the transition rate

⟨Γ𝑎+𝐴→𝐶⟩ for the capture reaction in eq. (4.1) to occur is given by

⟨Γ𝑎+𝐴→𝐶⟩ = ⟨𝜎𝐶⟩ 𝜙, (4.6)

where the incident particle flux 𝜙 is given by eq. (3.44) with the substitutions 𝑖, 1 → 𝑎

and 𝑖, 2 → 𝐴. Specializing to the CM frame allows one to write the flux 𝜙 in the form

𝜙 = 𝐸 |𝐩𝛼|
𝑉 𝐸𝑎𝐸𝐴

. (CM frame, 4.7)

The factor ⟨𝜎𝐶⟩ is the energy-averaged4 compound nucleus formation cross section. It

can be shown (see appendix A) that this cross section may be written in terms of CM

frame quantities as

⟨𝜎𝐶⟩ = 𝜋 (2𝐽 + 1)
|𝐩𝛼|2 (2𝑠𝑎 + 1)(2𝑠𝐴 + 1)

∑
ℓ𝑗

𝛿𝜋 𝑇ℓ𝑗(𝜀) (CM frame, 4.8)

where |𝐩𝛼| is the magnitude of the 3-momentum of either 𝑎 or 𝐴 in the CM frame,5 and

𝜀 is the total kinetic energy in the CM frame:

𝜀 = 𝐸 − 𝑚𝑎 − 𝑚𝐴. (CM frame, 4.9)

The transmission coefficient6 𝑇ℓ𝑗(𝜀) represents the average probability that the in-

coming projectile’s partial wave with orbital angular momentum ℓ and total angular
4In this case, the averaging has been performed over the interval [𝜀, 𝜀 + 𝑑𝐸𝑎].
5By definition, 𝐩𝑎 = −𝐩𝐴 in the CM frame.
6Bethe refers to the transmission coefficient as the “sticking probability’’ [320].
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momentum 𝑗 will be absorbed to create a compound nucleus with total spin 𝐽. The

energy-averaging process allows one to neglect interference between partial waves with

different angular momenta. Parity conservation is explicitly enforced in eq. (4.8) by the

factor 𝛿𝜋, which we define to be one when eq. (4.4) is satisfied and zero when it is not.

The number of states in which the compound nucleus 𝐶 may be formed is given by

𝑛𝐶 = (2𝐽 + 1) 𝜌𝐶(𝐸𝑥, 𝐽 , Π) 𝑑𝐸𝑎, (4.10)

where 𝜌𝐶(𝐸𝑥, 𝐽 , Π) is the density of nuclear levels with spin 𝐽 and parity Π for nucleus

𝐶 near excitation energy 𝐸𝑥. The factor 2𝐽 + 1 accounts for the number of possible spin

orientations for an object with total spin 𝐽. Now suppose that 𝑎 is captured by 𝐴 to form

the compound nucleus 𝐶 and that 𝑎 will eventually be re-emitted. Let ⟨Γ𝐶→𝑎+𝐴⟩ denote

the energy-averaged transition rate for the decay that results in the re-emission of 𝑎. The

number of states into which the re-emission may occur is given by

𝑛𝑎+𝐴 = (2𝑠𝐴 + 1) 𝜌𝐴(𝐸𝑥,𝐴, 𝑠𝐴, Π𝐴) 𝑑𝐸𝑎 [(2𝑠𝑎 + 1) 𝑉
2𝜋2 |𝐩𝛼|2 𝑑 |𝐩𝛼| ] (4.11)

where 𝜌𝐴(𝐸𝑥,𝐴, 𝑠𝐴, Π𝐴) is the density of nuclear levels with spin 𝑠𝐴 and parity Π𝐴 for

nucleus 𝐴 at excitation energy 𝐸𝑥,𝐴. The factor in square brackets represents the number

of states available7 to the projectile 𝑎 within the finite volume 𝑉. A similar factor for

𝐴 is not needed here because the state that it occupies within the volume 𝑉 is fixed by

momentum conservation. The same is true for 𝐶 in eq. (4.10).

If the Hamiltonian governing the interaction between 𝑎 and 𝐴 is invariant under

time reversal (which will be the case for particles that interact via the strong force and

electromagnetism), then it follows that transitions between individual microstates of 𝐶

and microstates of the 𝑎 + 𝐴 system should occur at the same rate regardless of the

direction of time:
⟨Γ𝑎+𝐴→𝐶⟩

𝑛𝐶
=

⟨Γ𝐶→𝑎+𝐴⟩
𝑛𝑎+𝐴

. (4.12)

7See eqs. (3.40) and (3.52). Note that we have integrated over all possible directions of 𝑎’s 3-momentum
and that 𝑑 |𝐩𝛼| = 𝐸𝑎 |𝐩𝛼|−1 𝑑𝐸𝑎.
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Combining the results from eqs. (4.6)–(4.12) allows one to write

⟨Γ𝐶→𝑎+𝐴⟩ =
𝑛𝑎+𝐴
𝑛𝐶

⟨Γ𝑎+𝐴→𝐶⟩ =
𝑛𝑎+𝐴
𝑛𝐶

⟨𝜎𝐶⟩ 𝜙

= 1
2𝜋

∑
ℓ𝑗

𝐸 |𝐩𝛼| 𝛿𝜋 𝑇ℓ𝑗(𝜀) 𝜌𝐴(𝐸𝑥,𝐴, 𝑠𝐴, Π𝐴)
𝐸𝑎𝐸𝐴 𝜌𝐶(𝐸𝑥, 𝐽 , Π)

𝑑 |𝐩𝛼| . (CM frame, 4.13)

Since

𝐸 = 𝜀 + 𝑚𝑎 + 𝑚𝐴 (CM frame, 4.14)

and

𝐸 = 𝐸𝑎 + 𝐸𝐴 = √|𝐩𝛼|2 + 𝑚2
𝑎 + √|𝐩𝛼|2 + 𝑚2

𝐴, (CM frame, 4.15)

it follows that

𝑑 |𝐩𝛼| = 𝐸𝑎𝐸𝐴
𝐸 |𝐩𝛼|

𝑑𝐸 = 𝐸𝑎𝐸𝐴
𝐸 |𝐩𝛼|

𝑑𝜀. (CM frame, 4.16)

Equation (4.13) may therefore be simplified to read

⟨Γ𝐶→𝑎+𝐴⟩ = 1
2 𝜋 𝜌𝐶(𝐸𝑥, 𝐽 , Π)

∑
ℓ𝑗

𝛿𝜋 𝑇ℓ𝑗(𝜀) 𝜌𝐴(𝐸𝑥,𝐴, 𝑠𝐴, Π𝐴) 𝑑𝜀. (CM frame, 4.17)

The total width for a decay of 𝐶 into 𝑎 + 𝐴 is obtained by integrating eq. (4.17) over

all values of 𝜀 consistent with the statement of energy conservation given in eq. (4.2).

It should be noted when performing this integral that the excitation energy 𝐸𝑥,𝐴 of the

residual nucleus 𝐴 is a function of the CM frame total kinetic energy 𝜀. Specifically, in the

CM frame (where the kinetic energy of the compound nucleus 𝐶 is zero), the functional

form of 𝐸𝑥,𝐴 may be written as

𝐸𝑥,𝐴 = 𝐸𝑥,𝐴(𝜀) = 𝐸𝑥 − 𝑄g.s. − 𝜀. (CM frame, 4.18)

The ground-state Q-value 𝑄g.s. is given by

𝑄g.s. ≡ 𝑚𝑎 + 𝑚𝐴, g.s. − 𝑚𝐶, g.s. (4.19)

where 𝑚𝐴, g.s. is the ground-state mass of 𝐴 and 𝑚𝐶, g.s. is the same for 𝐶. The maximum

value of 𝜀 allowed by energy conservation 𝜀max occurs when the residual nucleus 𝐴 is

produced in its ground state, i.e., 𝐸𝑥,𝐴 = 0. Then eq. (4.18) implies that

𝜀max = 𝐸𝑥 − 𝑄g.s.. (CM frame, 4.20)
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The lowest value of 𝜀 consistent with energy conservation is zero, which occurs at the

excitation energy threshold for emitting 𝑎 from the compound nucleus 𝐶. Integrating

eq. (4.17) over the entire allowed energy range yields the expression

Γ𝛼 = 1
2 𝜋 𝜌𝐶(𝐸𝑥, 𝐽 , Π)

∑
ℓ𝑗

𝛿𝜋 ∫
𝜀max

0
𝑇ℓ𝑗(𝜀) 𝜌𝐴(𝐸𝑥,𝐴(𝜀), 𝑠𝐴, Π𝐴) 𝑑𝜀, (CM frame, 4.21)

where

Γ𝛼 ≡ ∫
𝜀max

0
⟨Γ𝐶→𝑎+𝐴⟩ 𝑑𝜀, (4.22)

𝐸𝑥,𝐴(𝜀) and 𝜀max are defined as in eqs. (4.18) and (4.20), and the abbreviation 𝛼 ≡ 𝐶 →

𝑎 + 𝐴 has been introduced to represent the set of decays of 𝐶 that lead to two-body final

states involving 𝑎 and 𝐴. The explicit form of the angular momentum sum is

∑
ℓ𝑗

=
∞

∑
ℓ=0

ℓ+𝑠𝑎

∑
𝑗=|ℓ−𝑠𝑎|

. (4.23)

Because of the centrifugal barrier that appears in the scattering Hamiltonian, the trans-

mission coefficients approach zero as ℓ increases. Therefore, in practical calculations, the

sum over ℓ is terminated when the contribution of the transmission coefficients for higher

ℓ values may be safely neglected.

Because a compound nucleus retains only enough “memory’’ of its formation to satisfy

basic conservation laws, an identical compound nucleus 𝐶 formed by a different reaction,

say, 𝑏+𝐵 → 𝐶, will have the same average partial decay width Γ𝛼 to the final state 𝑎+𝐴

as in the case just considered. Since we have not made any detailed assumptions about

the properties of the particles 𝑎 and 𝐴, eq. (4.21) provides a general expression under the

Hauser-Feshbach model for the average partial width for a decay of a compound nucleus

𝐶 into an arbitrary two-body final state 𝑎 + 𝐴.

To emphasize the generic nature of this result, define new expressions to represent the

initial 𝜌𝑖 and final 𝜌𝑓 nuclear level densities:

𝜌𝑖(𝐸𝑥, 𝐽 , Π) ≡ 𝜌𝐶(𝐸𝑥, 𝐽 , Π) (4.24)

𝜌𝑓(𝐸′
𝑥(𝜀), 𝐽 ′, Π′) ≡ 𝜌𝐴(𝐸𝑥,𝐴(𝜀), 𝑠𝐴, Π𝐴). (4.25)
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Then, using these definitions, eq. (4.21) may be written in the form

Γ𝛼 = 1
2 𝜋 𝜌𝑖(𝐸𝑥, 𝐽 , Π)

∑
ℓ𝑗

𝛿𝜋 ∫
𝜀max

0
𝑇ℓ𝑗(𝜀) 𝜌𝑓(𝐸′

𝑥(𝜀), 𝐽 ′, Π′) 𝑑𝜀. (CM frame, 4.26)

If decays involving more than two final particles are neglected, then the energy-averaged

total width Γ of the initial compound nucleus is simply the sum of the average partial

widths to all possible two-body final states 𝛽 ≡ 𝑏 + 𝐵:

Γ = ∑
𝛽

Γ𝛽. (4.27)

Therefore, the probability 𝑃(𝐶 → 𝛼) that a compound nucleus 𝐶 will decay into a two-

body final state 𝛼 may be estimated using the average partial decay widths via

𝑃(𝐶 → 𝛼) = Γ𝛼
Γ

= Γ𝛼
∑𝛽 Γ𝛽

. (4.28)

The energy-averaged cross section ⟨𝜎𝛼𝛽⟩ for a reaction that proceeds via the formation

of a compound nucleus, i.e., the cross section for the process

𝑎 + 𝐴 → 𝐶 → 𝑏 + 𝐵 (4.29)

for 𝛼 ≡ 𝑎 + 𝐴 and 𝛽 ≡ 𝑏 + 𝐵, is given by

⟨𝜎𝛼𝛽⟩ = ⟨𝜎𝐶⟩ 𝑃 (𝐶 → 𝛽) = ⟨𝜎𝐶⟩
Γ𝛽

Γ
(4.30)

with ⟨𝜎𝐶⟩ defined for the initial state 𝛼 as in eq. (4.8). This expression is a quantitative

statement of the Bohr independence hypothesis that was discussed in section 4.1.

Equations (4.26) and (4.28) summarize the MARLEY model of nuclear de-excitations

for unbound nuclear states. After a compound nucleus is formed by a neutrino scattering

event, it decays to a two-body final state according to (1) tabulated 𝛾-ray branching

ratios (for bound nuclear states) or (2) probabilities computed using the Hauser-Feshbach

partial decay widths derived in this section (for unbound states and cases where no 𝛾-ray

data are available). Situations in which multiple particles are emitted from the highly

excited nucleus are treated as a sequence of individual Hauser-Feshbach binary decays.
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In order to calculate the partial widths at each decay step, one must first determine the

level densities8 (𝜌𝑖 and 𝜌𝑓) and the transmission coefficients (𝑇ℓ𝑗) that appear in eq. (4.26).

The models used by MARLEY to obtain values for these quantities are described in the

following sections. These models are predominantly taken from version 3 of the Reference

Input Parameter Library9 (RIPL-3) [321], and version 1.8 of the TALYS nuclear reaction

code [313, 314].

4.3 Level density model

At low excitation energies where discrete nuclear level data are available, MARLEY eval-

uates the Hauser-Feshbach decay width to each final-state nuclear level individually. This

is done by using the following form for the level density 𝜌𝑓 of the final-state nucleus:

𝜌𝑓(𝐸′
𝑥, 𝐽 ′, Π′) = ∑

𝑘
𝛿(𝐸′

𝑥 − 𝐸𝑥,𝑘) 𝛿(𝐽 ′ − 𝐽𝑘) 𝛿(Π′ − Π𝑘), (discrete levels, 4.31)

where 𝐸𝑥,𝑘, 𝐽𝑘, and Π𝑘 are the excitation energy, total spin, and intrinsic parity of the

𝑘th level of the final-state nucleus. Plugging this expression into eq. (4.26) yields

Γ𝛼 = 1
2 𝜋 𝜌𝑖(𝐸𝑥, 𝐽 , Π)

∑
𝑘

∑
ℓ𝑗

𝛿𝜋 𝑇ℓ𝑗(𝜀𝑘) (CM frame, discrete levels, 4.32)

where the sum over 𝑘 includes all kinematically accessible levels, and 𝜀𝑘, the CM frame

total kinetic energy after a decay to the 𝑘th level of the final-state nucleus, is given by

𝜀𝑘 = 𝐸𝑥 − 𝑄g.s. − 𝐸𝑘. (CM frame, discrete levels, 4.33)

In cases where such data are missing or, in the case of high excitation energies, simply

impractical to obtain due to the sheer number of closely-spaced nuclear levels, MARLEY

calculates nuclear level densities using the RIPL-3 parameterization [321] of the Back-

shifted Fermi Gas Model (BSFGM), which is based on the work of Koning et al. [322]

The BSFGM has its roots in a proposal by Hans Bethe [323, 324] to model the nu-

cleus as a gas composed of two distinct species (protons and neutrons) of noninteracting
8Note that, since each of the partial widths contains the same initial state level density factor

1/ [2 𝜋 𝜌𝑖(𝐸𝑥, 𝐽, Π)], this factor will cancel out when computing decay probabilities. One therefore
need only compute the final-state level density 𝜌𝑓(𝐸′

𝑥, 𝐽′, Π′) when selecting a compound nucleus decay
channel in a Monte Carlo simulation.

9A widely-used collection of nuclear data and parameterized nuclear structure models
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fermions. A “back shift’’ correction was introduced into the model after systematic differ-

ences were noticed between the level densities for even-even, odd-𝐴, and odd-odd10 nuclei.

These differences can be attributed [325, 326] to the tendency of like nucleons to form

spin-zero Cooper pairs.11 They are accounted for in the BSFGM by replacing the exci-

tation energy 𝐸𝑥 of the uncorrected Fermi gas level density with an effective excitation

energy 𝑈 defined by

𝑈 ≡ 𝐸𝑥 − Δ (4.34)

where the energy shift

Δ = 𝜒pair
12 MeV√

𝐴
+ 𝛿 (4.35)

is an empirical parameter. The constant 𝛿 is adjusted to fit the experimental data for a

particular nucleus, and the factor 𝜒pair is defined by

𝜒pair ≡

⎧{{{
⎨{{{⎩

1 even-even

0 odd-𝐴

−1 odd-odd.

(4.36)

Under the BSFGM, the total density of nuclear levels near excitation energy 𝐸𝑥 is

given by the expression [322]

𝜌tot(𝐸𝑥) = [ 1
𝜌tot

𝐹 (𝐸𝑥)
+ 1

𝜌0(𝐸𝑥)
]

−1

(4.37)

= 1
12𝜎

[
√

2 𝑎1/4
LD 𝑈5/4 exp(−2√𝑎LD 𝑈) + 1

𝑎LD
exp(−𝑎LD 𝑈 − 1)]

−1

, (4.38)

where

𝜌tot
𝐹 (𝐸𝑥) = 1√

2𝜋𝜎

√
𝜋

12
exp(2√𝑎LD𝑈)

𝑎1/4
LD𝑈5/4

(4.39)

is the total level density computed according to Bethe’s original formula (but using the

effective excitation energy 𝑈 mentioned above), 𝑎LD is the level density parameter, 𝜎 is
10These terms refer to the neutron number 𝑁 and the proton number 𝑍 of a nucleus, which are both

nonnegative integers. For even-even nuclei, both 𝑁 and 𝑍 are even. For odd-𝐴 nuclei, one of 𝑁 and 𝑍
is even and the other is odd, and therefore the mass number 𝐴 = 𝑁 + 𝑍 is also odd. For odd-odd nuclei,
both 𝑁 and 𝑍 are odd.

11See reference [327] for a recent review of the nucleon pairing literature.
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the spin cutoff parameter, and

𝜌0(𝐸𝑥) = 𝑎LD
12𝜎

exp(𝑎LD 𝑈 + 1) (4.40)

is a correction intended to suppress the unphysical divergence of 𝜌tot
𝐹 (𝐸𝑥) at low excita-

tion energies. The traditional derivation of 𝜌tot
𝐹 (𝐸𝑥) involves the use of the saddle-point

method12 to approximate the inverse Laplace transform of the nucleon gas’s grand canon-

ical partition function. This approximation is inappropriate at low energies and is the

source of the problematic divergence [328, 329].

The density of nuclear levels 𝜌(𝐸𝑥, 𝐽 , Π) near excitation energy 𝐸𝑥 with total spin 𝐽

and intrinsic parity Π may be written in the form

𝜌(𝐸𝑥, 𝐽 , Π) = 𝜋(𝐸𝑥, 𝐽 , Π) 𝑅(𝐸𝑥, 𝐽) 𝜌tot(𝐸𝑥) (4.41)

where 𝑅(𝐸𝑥, 𝐽) is the nuclear spin distribution and 𝜋(𝐸𝑥, 𝐽 , Π) is the parity distribution.

The total level density is the sum of this quantity over all possible spins and parities, i.e.,

𝜌tot(𝐸𝑥, 𝐽 , Π) = ∑
𝐽

∑
Π

𝜌(𝐸𝑥, 𝐽 , Π). (4.42)

Under the assumption that the individual nucleon spins are pointing in random direc-

tions, it can be shown [324] that the spin distribution 𝑅(𝐸𝑥, 𝐽) is given by [322]

𝑅(𝐸𝑥, 𝐽) = 2𝐽 + 1
2𝜎2 exp [−

(𝐽 + 1
2)2

2𝜎2 ] . (4.43)

Although at least one attempt has been made [330] to create an energy-dependent em-

pirical model for the parity distribution 𝜋(𝐸𝑥, 𝐽 , Π), most calculations assume that both

parities occur with equal probability, i.e.,

𝜋(𝐸𝑥, 𝐽 , Π) = 1
2

. (4.44)

MARLEY adopts this assumption in agreement with the RIPL-3 library [321].

Early versions of the BSFGM typically used a constant value for the level density

parameter 𝑎LD. However, to correct for the damping of shell effects at high excitation
12Also often referred to as the method of steepest descent or the stationary-phase method
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energies, the RIPL-3 evaluation adopts an energy-dependent functional form (introduced

by Ignatyuk et al. [331]) for the level density parameter 𝑎LD:

𝑎LD ≡ 𝑎LD(𝐸𝑥, 𝑍, 𝐴) = ̃𝑎(𝐴) {1 + 𝛿𝑊(𝑍, 𝐴)
𝑈

[1 − exp(−𝛾𝑈)]} . (4.45)

Here 𝛿𝑊(𝑍, 𝐴) is the shell correction energy, ̃𝑎(𝐴) is the asymptotic value of 𝑎LD at

high excitation energies, and 𝛾 is a damping parameter that represents how quickly

𝑎LD(𝐸𝑥, 𝑍, 𝐴) approaches ̃𝑎(𝐴). The values of these three parameters are determined

via the relations

𝛿𝑊(𝑍, 𝐴) = 𝛿𝑀exp(𝑍, 𝐴) − 𝛿𝑀LDM(𝑍, 𝐴) (4.46)

̃𝑎 = 𝛼𝐴 + 𝛽𝐴2/3 (4.47)

𝛾 = 𝛾0
𝐴1/3 (4.48)

where 𝛿𝑀exp(𝑍, 𝐴) is the measured nuclear mass excess13 for the nuclide with proton

number 𝑍 and mass number 𝐴, 𝛿𝑀LDM(𝑍, 𝐴) is the corresponding prediction for the

nuclear mass excess using the liquid drop model14 of Myers and Swiatecki [334], and

the empirical parameters 𝛼, 𝛽, and 𝛾0 are determined using fits to nuclear level data.

MARLEY adopts the global “BFM effective’’ values from Koning et al. [322] for 𝛼, 𝛽,

𝛾0, and the constant energy shift 𝛿 (see eq. (4.35)). These values were determined via a

systematic study of nuclear level data for 289 nuclides and are given by

𝛼 = 0.072 239 6 MeV−1 (4.49)

𝛽 = 0.195 267 MeV−1 (4.50)

𝛾0 = 0.410 289 MeV−1 (4.51)

𝛿 = 0.173 015 MeV. (4.52)

13Experimental nuclear mass values are calculated using the 2012 Atomic Mass Evaluation (AME2012)
[332, 333]. The mass excess 𝛿𝑀 is defined in terms of the mass 𝑀 via 𝛿𝑀 ≡ 𝑀 − 𝐴 u, where u is the
unified atomic mass unit.

14The RIPL-3 prescription (see reference [321, p. 3164]), which is taken from the work of Mengoni and
Nakajima [326], is used for the liquid drop model.
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The spin cutoff parameter 𝜎 determines the width of the angular momentum distri-

bution of the level density. At excitation energies above the neutron separation threshold

𝑆𝑛 for the nucleus of interest, the RIPL-3 estimate of the spin cutoff parameter may be

written as [321]

𝜎2 = 𝜎2
𝐹(𝐸𝑥) ≡ (0.013 89 MeV−1) 𝐴5/3

̃𝑎
√𝑎LD 𝑈 = ℑeff 𝑇nuc (4.53)

where 𝑇nuc = √𝑈/𝑎 is the BSFGM nuclear temperature and

ℑeff = [0.013 89 MeV−1] 𝑎LD
̃𝑎

𝐴5/3 (4.54)

is the effective nuclear moment of inertia.

At low excitation energies where 𝐸𝑥 < Δ (and therefore 𝑈 < 0), the expression in

eq. (4.53) becomes imaginary and therefore unphysical. To get around this difficulty,

MARLEY uses linear interpolation to calculate the spin cutoff parameter for excitation

energies below 𝑆𝑛. This interpolation is performed between a low-energy value of the spin

cutoff parameter (based on global systematics)

𝜎𝑑,global ≡ 0.83 𝐴0.26 (4.55)

and the continuum estimate 𝜎2
𝐹(𝐸𝑥) evaluated at the neutron separation threshold. This

yields the following expression for the spin cutoff parameter 𝜎2 which is used by MARLEY

at all excitation energies 𝐸𝑥:

𝜎2 = 𝜎2(𝐸𝑥) =
⎧{
⎨{⎩

𝜎2
𝑑,global + 𝐸𝑥

𝑆𝑛
[𝜎2

𝐹(𝑆𝑛) − 𝜎2
𝑑,global] for 𝐸𝑥 < 𝑆𝑛

𝜎2
𝐹(𝐸𝑥) for 𝐸𝑥 ≥ 𝑆𝑛.

(4.56)

This is identical to the approach recommended by RIPL-3 [321] when no discrete level

data are available.15

15It should be pointed out that the RIPL-3 linear interpolation technique for computing the spin cutoff
parameter was first proposed in reference [322]. However, in equation (25) of that paper and in equation
(4.257) of the user manual for version 1.8 of the TALYS nuclear code [335] (which is maintained by
the same authors), there appears to be a misprint in the expression for 𝜎2 for the 𝐸𝑑 ≤ 𝐸𝑥 ≤ 𝑆𝑛
case. Rather than the 𝜎2

𝐹(𝑆𝑛) term that appears in the RIPL-3 description (see the equation just below
equation (60) in reference [321]) of the BSFGM, Koning et al. write 𝜎2

𝐹(𝐸𝑥). Version 1.8 of the TALYS
source code, however, appears to agree with the RIPL-3 recommendation.
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4.4 Transmission coefficient model

In order to determine decay probabilities under the Hauser-Feshbach formalism, one must

not only compute the level density for the final-state nucleus, but also the transmission

coefficients 𝑇ℓ𝑗 for each particle that may possibly be emitted. For many years, the

standard tool used to obtain the transmission coefficients for nucleon and light ion emission

has been the nuclear optical model.16 Under this model, the nucleus is replaced with a

potential well that includes both a real part and an imaginary part, the latter being

analogous to the imaginary term that appears in the index of refraction for an optically

absorptive material. This simple treatment of the nucleus is inadequate to reproduce the

rapid fluctuations of nuclear cross sections in the vicinity of closely-spaced nuclear levels,

but it can be used quite successfully to obtain the energy-averaged behavior needed for

statistical model calculations [337].

With the exception of elastic scattering, all direct reactions are neglected in the op-

tical model, and therefore particle absorption by the nucleus may be equated with the

formation of a compound system. As will be discussed below, because of time-reversal

invariance, the transmission coefficient for emitting a particular particle from such a sys-

tem is equal to the probability of the same particle being absorbed to form the compound

nucleus in the time-reversed process. Solving the time-reversed two-body problem for

the probability that the emitted particle will be absorbed by the optical potential thus

provides a straightforward way of obtaining the transmission coefficients governing the

decay of the compound nucleus.

4.4.1 Optical model parameterization for nucleons17

When calculating partial widths to decay channels that involve the emission of a nuclear

fragment (nucleons and light ions up to 4He are considered), MARLEY determines the

transmission coefficients needed to evaluate the expression in eq. (4.26) using a global

parameterization of the nuclear optical model developed by Koning and Delaroche [338].
16See reference [336] for an overview of the early history of the nuclear optical model.
17Conventional (i.e., non-natural) units where ℏ ≠ 𝑐 ≠ 1 will be used starting here until the end of

the chapter. This choice of units is intended to ease comparison between the results shown here and the
many sources which are cited.
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Under this parameterization, the optical potential 𝒰 used to represent the nucleus may

be written as18

𝒰 = − 𝒱𝑉 − 𝑖𝒲𝑉 − 𝑖𝒲𝐷 + [𝒱𝑆𝑂 + 𝑖𝒲𝑆𝑂][ 2
ℏ2 ℓℓℓ ⋅ 𝑠𝑠𝑠] + 𝒱𝐶(𝑟). (4.57)

Here, 𝒱𝐶(𝑟) is the Coulomb potential, and the action of the spin-orbit operator 2
ℏ2 ℓℓℓ ⋅𝑠𝑠𝑠 on

a state with definite total angular momentum 𝑗, orbital angular momentum ℓ, and spin 𝑠

is given by
2
ℏ2 ℓℓℓ ⋅ 𝑠𝑠𝑠 |𝑗 ℓ 𝑠⟩ = 𝑑ℓ𝑠 |𝑗 ℓ 𝑠⟩ (4.58)

where the eigenvalue of the spin-orbit operator may be written as

𝑑ℓ𝑠 = 𝑗(𝑗 + 1) − ℓ(ℓ + 1) − 𝑠(𝑠 + 1). (4.59)

The volume (𝑉), surface (𝐷), and spin-orbit (𝑆𝑂) terms of the optical potential are

functions that may be expressed as the product of an energy-dependent well depth and

an energy-independent radial part:

𝒱𝑉 = 𝑉𝑉(𝜀lab)𝑓(𝑟, 𝑅𝑉, 𝑎𝑉) (4.60)

𝒲𝑉 = 𝑊𝑉(𝜀lab)𝑓(𝑟, 𝑅𝑉, 𝑎𝑉) (4.61)

𝒲𝐷 = −4𝑎𝐷𝑊𝐷(𝜀lab) 𝑑
𝑑𝑟

𝑓(𝑟, 𝑅𝐷, 𝑎𝐷) (4.62)

𝒱𝑆𝑂 = 𝑉𝑆𝑂(𝜀lab)𝜆2
𝜋
𝑟

𝑑
𝑑𝑟

𝑓(𝑟, 𝑅𝑆𝑂, 𝑎𝑆𝑂) (4.63)

𝒲𝑆𝑂 = 𝑊𝑆𝑂(𝜀lab)𝜆2
𝜋
𝑟

𝑑
𝑑𝑟

𝑓(𝑟, 𝑅𝑆𝑂, 𝑎𝑆𝑂) (4.64)

Here, the well depths 𝑉𝑉, 𝑊𝑉, etc. are real-valued functions of the laboratory19 kinetic

energy 𝜀lab of the projectile, 𝜆𝜋 = ℏ/𝑚𝜋𝑐 is the reduced Compton wavelength of a charged
18In reference [338], the authors write the spin-orbit terms using the operator ℓℓℓ ⋅ 𝝈, where 𝝈 is the

Pauli vector and (unlike the expression given here) the eigenvalues of ℓ2 are taken to be dimensionless
(no factor of ℏ2). While this is neater to write than and, for spin- 1

2 projectiles, equivalent to the present
choice of 2

ℏ2 ℓℓℓ ⋅𝑠𝑠𝑠 (since for nucleons, tritons, etc., the spin operator 𝐬 = ℏ
2 𝝈), it unnecessarily obscures the

transition to composite projectiles with other spins (e.g., deuterons, which have spin 1). The notation
shown here for this operator may be used unmodified with a projectile of arbitrary spin.

19The laboratory frame is the rest frame of the target nucleus.
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pion, and 𝑓(𝑟, 𝑅, 𝑎WS) is a Woods-Saxon shape [339]

𝑓(𝑟, 𝑅, 𝑎WS) = (1 + exp [(𝑟 − 𝑅)/𝑎WS])−1 (4.65)

with effective radius 𝑅 and diffuseness parameter 𝑎𝑊𝑆.

For the sake of brevity, the explicit forms of the well depth functions and the values

of the many parameters used to calculate the full optical model potential are omitted

from this discussion. The interested reader is encouraged to refer to reference [338] for a

complete description of the model. MARLEY uses the global neutron and proton optical

potentials defined therein to compute transmission coefficients for nuclear decays involving

nucleon emission.

4.4.2 Optical model parameterization for composite nuclear fragments

Although most of the effort in the optical model community has focused on creating

parameterizations of the optical potential for incident nucleons, there has been some

attention paid to complex (i.e., multi-nucleon) projectiles like deuterons and alpha parti-

cles.20 As an alternative to creating a separate parameterization for deuterons, Watanabe

proposed that the single-nucleon optical potentials could instead be averaged over the

internal motion of the deuteron using its internal wavefunction [340]. This “folding’’ ap-

proach was soon extended to tritons and helions [341], 𝛼 particles [342, 343], and 6Li ions

[344]. Despite the simplicity of Watanabe’s technique, it was nevertheless fairly successful

in reproducing the experimental data.21

Watanabe’s proposed expression for the deuteron optical potential may be written in

the form [346, 347]

𝒰𝑑(𝜀lab, 𝐑) = ∫ 𝑑3𝐫𝑑 𝜓†
𝑑(𝐫𝑑) [𝒰𝑝(𝜀lab

2
, 𝐑 + 𝐫𝑑

2
) + 𝒰𝑛(𝜀lab

2
, 𝐑 − 𝐫𝑑

2
)] 𝜓𝑑(𝐫𝑑) (4.66)

where 𝒰𝑑(𝐑) is the optical potential for a deuteron projectile, evaluated at the position 𝐑

of the deuteron’s center of mass. The internal wavefunction 𝜓𝑑(𝐫𝑑) describes the motion

of the proton and neutron within the deuteron as a function of their relative position
20See references [284, 321] for lists of some commonly-used parameterizations of the optical potential

for complex projectiles.
21Reference [345] provides a long list of citations to the early studies.
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𝐫𝑑, which is defined to point from the neutron to the proton. The single-nucleon optical

potentials 𝒰𝑝 and 𝒰𝑛 describe the interaction of each individual nucleon with the target

nucleus, which is located at the origin. They are evaluated at half the deuteron’s kinetic

energy (in the laboratory frame) and at the position of each individual nucleon.

For the central terms in the optical model,22 there exists a particularly simple approx-

imation to eq. (4.66). Let 𝒰𝑐
𝑝 and 𝒰𝑐

𝑛 represent the central terms in the single-nucleon

potentials 𝒰𝑝 and 𝒰𝑛, respectively. If the central potential terms are approximated by

their values at the deuteron center of mass, i.e.,

𝒰𝑐
𝑝(𝜀lab

2
, 𝐑 + 𝐫𝑑

2
) ≈ 𝒰𝑐

𝑝(𝜀lab
2

, 𝐑) (4.67)

𝒰𝑐
𝑝(𝜀lab

2
, 𝐑 − 𝐫𝑑

2
) ≈ 𝒰𝑐

𝑝(𝜀lab
2

, 𝐑) , (4.68)

then it follows from eq. (4.66) that the central part of the deuteron optical potential 𝒰𝑐
𝑑

may be written as the sum of the individual nucleon central potentials evaluated at half

the deuteron energy:

𝒰𝑐
𝑑(𝜀, 𝐑) ≈ 𝒰𝑐

𝑝(𝜀lab
2

, 𝐑) + 𝒰𝑐
𝑛(𝜀lab

2
, 𝐑) . (4.69)

In deriving this result, we have noted that

∫ 𝑑3𝐫𝑑 𝜓†
𝑑(𝐫𝑑) 𝜓𝑑(𝐫𝑑) = 1. (4.70)

If the spin-orbit terms are assumed to be the same for protons and neutrons, then

the approach used above may also be applied to them, although the derivation is more

involved. The result turns out to be [346]

𝒰𝑠𝑜
𝑑 ≈ 1

2
𝒰𝑠𝑜

𝑁 (𝜀lab
2

, 𝐑) , (4.71)

where 𝒰𝑠𝑜
𝑁 represents the spin-orbit terms for a single nucleon. In 1970, Keaton et al.

derived similar results for the triton case [346]. In the notation used here, these may be
22In the parameterization described above, these are 𝒱𝑉, 𝒲𝑉, and 𝒲𝐷.

137



written as

𝒰𝑐
𝑡 ≈ 𝒰𝑐

𝑝(𝜀lab
3

, 𝐑) + 2 𝒰𝑐
𝑛(𝜀lab

3
, 𝐑) . (4.72)

𝒰𝑠𝑜
𝑡 ≈ 1

3
𝒰𝑠𝑜

𝑁 (𝜀lab
3

, 𝐑) . (4.73)

The expressions seen here for deuterons and tritons are suggestive of a general pattern

in which a central term in the optical potential for an arbitrary composite projectile

may be approximated as the sum of the corresponding terms for each of its constituent

nucleons. If the spin-orbit terms are the same for neutrons and protons, then a spin-orbit

term for a composite particle with mass number 𝐴 may also be approximated by 1/𝐴

times its single-nucleon value.

Based on a recommendation by Madland [348], version 1.8 of the TALYS nuclear

code [335] implements a superposition model for composite projectile optical potentials

much like the approximations shown here. This superposition model is used by default in

TALYS and has been adopted for MARLEY calculations of transmission coefficients for

composite nuclear fragments. Under this model, the optical model parameters from eqs.

(4.60)–(4.64) for nuclear fragments with mass number 𝐴 > 1 are given by the following

expressions:

𝑉𝑉(𝜀lab) = 𝑁 𝑉 𝑛
𝑉 (𝜀lab/𝐴) + 𝑍 𝑉 𝑝

𝑉 (𝜀lab/𝐴) 𝑊𝑉(𝜀lab), 𝑊𝐷(𝜀lab) likewise (4.74)

𝑉𝑆𝑂(𝜀lab) =
𝑉 𝑛

𝑆𝑂(𝜀lab) + 𝑉 𝑝
𝑆𝑂(𝜀lab)

2𝐴
𝑊𝑆𝑂(𝜀lab) likewise (4.75)

𝑅𝑉 = 𝑁𝑅𝑛
𝑉 + 𝑍𝑅𝑝

𝑉
𝐴

𝑅𝐷, 𝑅𝑆𝑂 likewise (4.76)

𝑎𝑣 = 𝑁𝑎𝑛
𝑉 + 𝑍𝑎𝑝

𝑉
𝐴

𝑎𝐷, 𝑎𝑆𝑂 likewise. (4.77)

Here 𝑍 and 𝑁 are the proton and neutron numbers of the fragment, respectively. The

superscript 𝑛 (𝑝) denotes the value of the corresponding parameter for an individual

neutron (proton), e.g., 𝑉 𝑛
𝑆𝑂(𝐸) is the spin-orbit well depth for neutrons. Note that the

values of the well depths given here match the previous approximations to the Watanabe
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model, except that the spin-orbit depths 𝑉𝑆𝑂 and 𝑊𝑆𝑂 are evaluated using the full kinetic

energy of the fragment, and the average value (𝑉 𝑛
𝑆𝑂 +𝑉 𝑝

𝑆𝑂)/2 is used as the single-nucleon

well depth for 𝑉𝑆𝑂 (with a similar expression for 𝑊𝑆𝑂).

4.4.3 Optical model calculations

The optical model potential described above neglects the spin of the target nucleus, treat-

ing it as effectively spin zero. Since scattering off of a spin zero target will not alter a

projectile’s angular momentum quantum numbers, it follows that the incident fragment’s

radial wavefunction may be expanded as a series of independent spherical partial waves

𝑢ℓ𝑗(𝑟), each with a definite orbital angular momentum ℓ and total angular momentum 𝑗.

Each of the 𝑢ℓ𝑗(𝑟) must independently satisfy the radial Schrödinger equation

[ 𝑑2

𝑑𝑟2 + 𝑘2 − ℓ(ℓ + 1)
𝑟2 − 𝑘2

𝜀
𝒰] 𝑢ℓ𝑗(𝑟) = 0 (4.78)

where 𝒰 is the optical model potential mentioned above, 𝑘 = |𝐩𝛼| /ℏ is the fragment’s

wavenumber in the CM frame (with 𝐩𝛼 being its CM frame 3-momentum), and 𝜀 is the

CM frame total kinetic energy. Although the Schrödinger equation is inherently nonrela-

tivistic, MARLEY follows reference [284] in using relativistic kinematics (i.e., relativistic

values of 𝜀, 𝜀lab, 𝑘, and the Sommerfeld parameter 𝜂 defined below) together with the

nonrelativistic dynamics of the optical model. MARLEY stops short, however, of apply-

ing a relativistic correction to the optical potential itself, although multiple prescriptions

exist in the literature for doing so [349, 350].

Far from the nucleus, the optical potential approaches the Coulomb potential, and the

fragment’s radial wavefunction approaches the asymptotic form [284, 351]

lim
𝑟→∞

𝑢ℓ𝑗(𝑟) = 𝑖
2

[𝐻−
ℓ (𝜂, 𝑘𝑟) − ⟨𝑆𝑗

ℓ𝑗𝛼, ℓ𝑗𝛼⟩ 𝐻+
ℓ (𝜂, 𝑘𝑟)] (4.79)

where ⟨𝑆𝑗
ℓ𝑗𝛼, ℓ𝑗𝛼⟩ is the energy-averaged S-matrix element,23 𝐻±

ℓ are the Coulomb wave-

functions [352], and the Sommerfeld parameter 𝜂 is defined by

𝜂 ≡ 𝑍nuc 𝑍 𝛼
𝛽rel

(4.80)

23See appendix A. Also note that, since the nucleus is modeled here as effectively spin zero, the
total angular momentum 𝐽 for the projectile-nucleus system is simply 𝑗, the projectile’s total angular
momentum.
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where 𝑍nuc is the proton number of the target nucleus and 𝛼 is the fine structure constant.

The (dimensionless) relative speed of the projectile and target 𝛽rel is given by eq. (3.45) if

we take the subscripts 𝑖, 1 to refer to the incident fragment and 𝑖, 2 to refer to the target

nucleus. In the laboratory frame, 𝛽rel is simply the speed of the fragment. In terms of

the lab frame kinetic energy of the fragment 𝜀lab, the relative speed may be written as

𝛽rel =
√(𝜀lab + 2 𝑚𝑎𝑐2) 𝜀lab

𝜀lab + 𝑚𝑎𝑐2 (4.81)

where 𝑚𝑎 is the mass of the fragment.

MARLEY uses the Numerov method [354] to solve for 𝑢ℓ𝑗 numerically at two radii 𝑟1

and 𝑟2 that are both sufficiently far from the nucleus that the full optical model potential 𝒰

is negligibly different from the Coulomb potential 𝒱𝐶(𝑟). The two solutions, 𝑢1 ≡ 𝑢ℓ𝑗(𝑟1)

and 𝑢2 ≡ 𝑢ℓ𝑗(𝑟2), are compared with the asymptotic form from eq. (4.79) and used to

compute24 the S-matrix element via

⟨𝑆𝑗
ℓ𝑗𝛼, ℓ𝑗𝛼⟩ ≈ 𝑢1𝐻−(𝜂, 𝑘𝑟2) − 𝑢2𝐻−(𝜂, 𝑘𝑟1)

𝑢1𝐻+(𝜂, 𝑘𝑟2) − 𝑢2𝐻+(𝜂, 𝑘𝑟1)
. (4.82)

The form of the asymptotic radial wavefunction given in eq. (4.79) lends itself to a

straightforward physical interpretation. Since 𝐻−
ℓ and 𝐻+

ℓ represent ingoing and outgo-

ing spherical waves, respectively, it follows that the absolute square ∣⟨𝑆𝑗
ℓ𝑗𝛼, ℓ𝑗𝛼⟩∣

2
of the

average S-matrix element represents the fraction of the incident flux that emerges after

scattering on the nucleus. The transmission coefficient

𝑇ℓ𝑗 ≡ 1 − ∣⟨𝑆𝑗
ℓ𝑗𝛼, ℓ𝑗𝛼⟩∣

2
(4.83)

is therefore the probability that the incident fragment is absorbed by the nucleus. Because

the scattering Hamiltonian for the optical model is time-reversal invariant, it follows from

the reciprocity theorem [357] that the S-matrix elements (and therefore the transmission

coefficients) for the forward- and backward-in-time processes (particle absorption by the

nucleus and particle emission from the nucleus) must be equal.
24MARLEY uses the GNU scientific library [355, 356] to calculate the Coulomb wavefunctions.
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4.4.4 Gamma-ray transitions in nuclei25

In addition to emitting fragments of the nucleus, compound nuclear states may also de-

excite via 𝛾-ray emission.26 The standard theoretical approach used to explain 𝛾-ray

transitions in nuclei considers the interaction of the nuclear current with a perturbing

external electromagnetic field. The nuclear current includes both an orbital part (due to

the motion of the proton charges within the nucleus) and a spin part (due to the spin

magnetic moments of the nucleons). Performing a multipole expansion of the external

field allows one to express electromagnetic transition amplitudes between nuclear states

in terms of the matrix elements of electric multipole (𝑄𝜆𝜇) and magnetic multipole (𝑀𝜆𝜇)

tensor operators, which may be written in the form

𝑄𝜆𝜇 = 𝜁(𝐸𝜆)
𝐴

∑
𝑘=1

𝑒(𝑘) 𝑟𝜆
𝑘 𝑌𝜆𝜇( ̂𝐫𝑘) (4.84)

𝑀𝜆𝜇 = 𝜇N
ℏ𝑐

𝜁(𝑀𝜆)
𝐴

∑
𝑘=1

[ 2
𝜆 + 1

𝑔(𝑘)
ℓ ℓℓℓ(𝑘) + 𝑔(𝑘)

𝑠 𝑠𝑠𝑠(𝑘)] ⋅ 𝛁𝑘 [𝑟𝜆
𝑘 𝑌𝜆𝜇( ̂𝐫𝑘)] . (4.85)

Here, 𝜁(𝐸𝜆) and 𝜁(𝑀𝜆) are complex phase factors with a magnitude of unity,27

𝜇N = 𝑒ℏ
2𝑚𝑝

(4.86)

is the nuclear magneton expressed in terms of the elementary charge 𝑒 and the proton

mass 𝑚𝑝, the 𝑌𝜆𝜇( ̂𝐫𝑘) are spherical harmonics, and 𝑒(𝑘), 𝐫𝑘, ℓℓℓ(𝑘), and 𝑠𝑠𝑠(𝑘) are respec-

tively the electric charge, position vector (with magnitude 𝑟𝑘), orbital angular momentum,

and spin angular momentum of the 𝑘th nucleon. The label 𝜆 is called the multipolarity

and refers to the multipole order 2𝜆 represented by the operator. For example, 𝑄10 is

component zero of the electric dipole operator, while 𝑀2,−1 is component −1 of the mag-

netic quadrupole operator. Each multipole tensor operator has 2𝜆 + 1 components, i.e.,

𝜇 ∈ {−𝜆, 𝜆 + 1, … , 𝜆}. The orbital (𝑔(𝑘)
ℓ ) and spin (𝑔(𝑘)

𝑠 ) gyromagnetic ratios for the 𝑘th
25This subsection closely follows Suhonen’s presentation given in reference [260].
26Electromagnetic nuclear transitions may also result in the ejection of an atomic electron via a process

known as internal conversion. However, this decay mode is typically rare for highly-excited nuclear levels.
It is neglected in the models adopted for MARLEY.

27See reference [260, pp. 119–120] for their explicit definitions according to two commonly used phase
conventions.
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nucleon are given by [260]

𝑔𝑝
ℓ = 1 𝑔𝑝

𝑠 = 5.586 (4.87)

for protons and

𝑔𝑛
ℓ = 0 𝑔𝑛

𝑠 = −3.826 (4.88)

for neutrons.

Assuming that the initial and final nuclear spin orientations are not observed, the

decay width Γ𝑋𝜆 for an electromagnetic multipole transition of type 𝑋 ∈ {𝐸, 𝑀} and

multipolarity 𝜆 is given by

Γ𝑋𝜆 = 2
𝜖0

𝜆 + 1
𝜆 [(2𝜆 + 1)!!]2

(
𝐸𝛾

ℏ𝑐
)

2𝜆+1

𝐵(𝑋𝜆; 𝜉𝑖 𝐽𝑖 ⟶ 𝜉𝑓 𝐽𝑓) (4.89)

where 𝜖0 is the vacuum permittivity, 𝐸𝛾 is the energy of the transition (i.e., the energy of

the emitted 𝛾-ray), 𝐽𝑖 (𝐽𝑓) is the initial (final) nuclear spin, and

𝐵(𝑋𝜆; 𝜉𝑖 𝐽𝑖 ⟶ 𝜉𝑓 𝐽𝑓) ≡ 1
2𝐽𝑖 + 1

∣⟨𝜉𝑓 𝐽𝑓 ∥MMM𝑋𝜆 ∥ 𝜉𝑖 𝐽𝑖⟩∣2 (4.90)

is the reduced transition probability. The labels 𝜉𝑖 and 𝜉𝑓 repesent all quantum numbers

other than the nuclear spin that are needed to define the initial and final nuclear states,

respectively. The electromagnetic multipole operator MMM𝑋𝜆 is given by

MMM𝐸𝜆 ≡ 𝐐𝜆 MMM𝑀𝜆 ≡ 𝐌𝜆 (4.91)

and the reduced matrix element of this operator may be obtained using the Wigner-Eckart

theorem,28 i.e.,

⟨𝜉𝑓 𝐽𝑓 ∥MMM𝜆𝜇 ∥ 𝜉𝑖 𝐽𝑖⟩ =
√2𝐽𝑓 + 1 ⟨𝜉𝑓 𝐽𝑓 𝑀𝑓∣M𝑋𝜆𝜇 |𝜉𝑖 𝐽𝑖 𝑀𝑖⟩

(𝐽𝑖 𝑀𝑖 𝜆 𝜇 | 𝐽𝑓 𝑀𝑓)
(4.92)

whenever the Clebsch-Gordan coefficient in the denominator does not vanish. The tran-

sition probability is nonzero only when the selection rules

|𝐽𝑖 − 𝜆| ≤ 𝐽𝑓 ≤ 𝐽𝑖 + 𝜆. (4.93)
28See section 3.8.
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Table 4.1: Lowest-order multipoles for 𝛾-ray
transitions between an initial nuclear level with

spin (parity) 𝐽𝑖 (Π𝑖) and a final nuclear level with
spin (parity) 𝐽𝑓 (Π𝑓). This table was taken from

reference [260].

Δ𝐽 ≡ ∣𝐽𝑓 − 𝐽𝑖∣ 0 a 1 2 3 4 5

Π𝑖 Π𝑓 = −1 E1 E1 M2 E3 M4 E5

Π𝑖 Π𝑓 = +1 M1 M1 E2 M3 E4 M5

a Gamma-ray transitions for 𝐽𝑖 = 𝐽𝑓 = 0 are not allowed.

and

Π𝑖 Π𝑓 =
⎧{
⎨{⎩

(−1)𝜆 for E𝜆

(−1)𝜆−1 for M𝜆
(4.94)

are satisfied. In eq. (4.94), Π𝑖 (Π𝑓) is the intrinsic parity of the initial (final) nuclear state.

Because the transition probability decreases rapidly with increasing multipolarity, it is

typically sufficient29 to consider the lowest-order multipole that satisfies eqs. (4.93)–(4.94)

when predicting the electromagnetic decay width between two nuclear levels with definite

spins and parities. See table 4.1 for a list of the lowest-order multipoles for typical nuclear

transitions.

4.4.5 Gamma-ray strength functions

In the context of compound nucleus decays, direct use of eq. (4.89) is impractical due to the

large number of accessible levels and the complicated form of the nuclear wavefunctions at

high excitation energies. Hauser-Feshbach calculations therefore use a statistical approach

in which the electromagnetic decay width for a given transition is approximated by its

energy-average value ⟨Γ𝑋𝜆⟩. The average behavior of the electromagnetic decay width is

then parameterized using a strength function 𝑓𝑋𝜆(𝐸𝛾) such that

⟨Γ𝑋𝜆⟩ =
𝑓𝑋𝜆(𝐸𝛾) 𝐸2𝜆+1

𝛾

𝜌(𝐸𝑥, 𝐽𝑖, Π𝑖)
(4.95)

29An important exception is competition between the M1 and E2 multipoles. There are known cases
where the E2 strength exceeds the M1 strength [260].
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where 𝐸𝑥 is the excitation energy of the initial nuclear level and 𝜌(𝐸𝑥, 𝐽𝑖, Π𝑖) is the level

density in its vicinity.

Several phenomenological models of the 𝛾-ray strength functions are in widespread

use [321, 358]. MARLEY adopts the Standard Lorentzian model30 to compute partial

decay widths involving 𝛾-ray emission. This model is based on the work of Brink [359]

and Axel [360], who independently [361] proposed that the average E1 decay width could

be related to the giant electric dipole resonance, a broad peak that was observed in the

cross sections for photonuclear reactions like (n,𝛾) and photofission.31 The presence of this

resonance may be attributed to a collective vibration of the protons against the neutrons

in a dipole pattern. Later experimental searches revealed the presence of additional

giant multipole resonances, each of which can be understood as corresponding to its own

collective vibration of the nucleons [362].

In the Standard Lorentzian model, 𝛾-ray emissions of type 𝑋𝜆 are assumed to take

place via de-excitation of the corresponding giant multipole resonance. The strength

function 𝑓𝑋𝜆(𝐸𝛾) is therefore parameterized using the Lorentzian shape

𝑓𝑋𝜆(𝐸𝛾) = 𝜎𝑋𝜆
(2𝜆 + 1)𝜋2(ℏ𝑐)2 [

Γ2
𝑋𝜆𝐸3−2𝜆

𝛾

(𝐸2
𝛾 − 𝐸2

𝑋𝜆)2 + 𝐸2
𝛾Γ2

𝑋𝜆

] (4.96)

where 𝐸𝑋𝜆, Γ𝑋𝜆, and 𝜎𝑋𝜆 are respectively the energy, width, and peak cross section of the

𝑋𝜆 giant resonance. The giant resonance parameters used by MARLEY are identical to

the defaults used (in the absence of tabulated data) by version 1.8 of the TALYS nuclear

code [314]. They are summarized in table 4.2.

Transmission coefficients for 𝛾-ray emission may be defined that are analogous to those

used for nuclear fragments. Assuming that parity conservation is satisfied, eq. (4.32) im-

plies that, for a transition to a discrete nuclear level in which a nuclear fragment is emitted

with orbital angular momentum ℓ and total angular momentum 𝑗, the transmission co-

efficient 𝑇ℓ𝑗 and the average decay width ⟨Γ𝛼⟩ are related via

𝑇ℓ𝑗 = 2𝜋 𝜌(𝐸𝑥, 𝐽𝑖, Π𝑖) ⟨Γ𝛼⟩ . (4.97)
30This name for the model comes from RIPL-3 [321]. It is also often referred to as the Brink-Axel

model.
31For a historical overview of the early measurements, see reference [362].
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Comparing this expression with eq. (4.95), we find that we may write down a 𝛾-ray

transmission coefficient 𝑇𝑋𝜆 as

𝑇𝑋𝜆(𝐸𝛾) = 2𝜋 𝑓𝑋𝜆(𝐸𝛾) 𝐸2𝜆+1
𝛾 . (4.98)

The 𝛾-ray transmission coefficient defined here may be used to compute decay widths

according to the Hauser-Feshbach prescription of eq. (4.26), provided that 𝑇𝑋𝜆(𝐸𝛾) is

used in place of 𝑇ℓ𝑗(𝜀) and the sum over ℓ𝑗 is replaced by a sum over multipolarities 𝑋𝜆.

In practice, MARLEY evaluates only the lowest-multipolarity transmission coefficient

that is allowed for a particular transition, since the contributions of higher multipoles are

expected to be small.

This concludes our discussion of the nuclear de-excitation models adopted for use

within MARLEY. The next chapter will present an evaluation of all currently available

data that can be used to determine the allowed approximation nuclear matrix elements

for the charged current reaction 𝜈𝑒 + 40Ar → 𝑒− + 40K∗.

145



Table 4.2: Giant resonance parameters used by MARLEY for 𝛾-ray strength function
calculations. Energies 𝐸𝑋ℓ and widths Γ𝑋ℓ are given in MeV, and peak cross sections 𝜎𝑋ℓ are

given in mb.

Transition Parameters

Electric dipole (E1) a 𝐸E1 = 31.2𝐴−1/3 + 20.6𝐴−1/6

ΓE1 = 0.026 𝐸1.91
E1

𝜎E1 = 1.2 (120 𝑁 𝑍) / (𝜋 𝐴 ΓE1)

Electric quadrupole (E2) b 𝐸E2 = 63𝐴−1/3

ΓE2 = 6.11 − 0.012𝐴

𝜎E2 = 0.00014 𝑍2 𝐸E2 / (𝐴1/3 ΓE2)

Magnetic dipole (M1) cd 𝐸M1 = 41𝐴−1/3

ΓM1 = 4

𝜎M1 = 3 𝜋2ℏ2𝑐2 [
(𝐵2

n − 𝐸2
M1)2 + 𝐵2

n Γ2
M1

𝐵n Γ2
M1

] [ 𝑓E1(𝐵n)
0.0588𝐴0.878 ]

Other electric transitions (Eℓ) e 𝐸Eℓ = 𝐸E2

ΓEℓ = ΓE2

𝜎Eℓ = (8 × 10−4)ℓ−2 𝜎E2

Other magnetic transitions (Mℓ) e 𝐸Mℓ = 𝐸M1

ΓMℓ = ΓM1

𝜎Mℓ = (8 × 10−4)ℓ−1 𝜎M1

a See [363, p. 129]
b See [364, p. 103]
c See [363, p. 132]
d 𝐵n = 7 MeV and 𝑓E1 is calculated using the E1 parameters above.
e Default approximation used by TALYS-1.8



Chapter 5

Allowed nuclear matrix elements for
40Ar(𝝂𝐞, 𝐞−−−)40K∗∗∗

Having established a model for neutrino-nucleus scattering cross sections in chapter 3

and for the post-scattering nuclear de-excitations in chapter 4, we need only determine

the values of the allowed nuclear matrix elements 𝐵(F−) and 𝐵(GT−) before we can

fully implement a Monte Carlo event generator for charged current 𝜈𝑒 scattering on 40Ar.

While there exist a number of theoretical calculations of the relevant cross sections (which

will be reviewed and compared with the MARLEY model in chapter 7), experimental

measurements of the allowed matrix elements have also been made for transitions to low-

lying levels of the final-state 40K nucleus. This chapter reviews the available data and

describes how they may be combined with a published theoretical calculation [288] of the

Gamow-Teller strength at high excitation energies to create a library of evaluated nuclear

matrix elements for MARLEY.

5.1 Model-independent predictions

To motivate the experimental techniques used to measure the allowed matrix elements,

it will be helpful to examine what can be said theoretically about 𝐵(F) and 𝐵(GT)

independent of any particular nuclear structure model.
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5.1.1 The Fermi matrix element

Consider the reduced Fermi matrix elements for charged current neutrino and antineutrino

scattering, which we denote by 𝐵(F−) and 𝐵(F+), respectively, with the sign matching

the relevant isospin ladder operator. These reduced matrix elements may be written as

𝐵(F±) ≡
𝑔2

𝑉 ∣⟨𝐽𝑓 ∥ ∑𝐴
𝑘=1 𝑡±(𝑘) ∥ 𝐽𝑖⟩∣

2

2𝐽𝑖 + 1
=

𝑔2
𝑉 ∣⟨𝐽𝑓 ∥ 𝑇± ∥ 𝐽𝑖⟩∣

2

2𝐽𝑖 + 1
(5.1)

where the 𝑇± are the total isospin ladder operators defined in eq. (3.26). Note that, since

𝑇± contains no spin operators, it transforms as a scalar (rank 0 spherical tensor) in spin

space, and the Wigner-Eckart theorem eq. (3.140) implies that1

𝐵(F±) 𝛿𝐽𝑖𝐽𝑓
𝛿𝑀𝑖𝑀𝑓

= 𝑔2
𝑉 ∣⟨ 𝐽𝑓 𝑀𝑓 T𝑓 T3𝑓 | 𝑇± | 𝐽𝑖 𝑀𝑖 T𝑖 T3𝑖 ⟩∣2 (5.2)

where 𝑀𝑖 (𝑀𝑓) is the spin projection quantum number of the initial (final) nuclear state.

The total isospin quantum number T𝑖 (T𝑓) and the isospin projection quantum number

T3𝑖 (T3𝑓) are also written explicitly for the initial (final) state. Applying 𝑇± to the initial

state using eq. (3.28) yields

𝐵(F±) 𝛿𝐽𝑖𝐽𝑓
𝛿𝑀𝑖𝑀𝑓

= 𝑔2
𝑉 (T𝑖 ∓T3𝑖)(T𝑖 ±T3𝑖 +1) ∣⟨ 𝐽𝑓 𝑀𝑓 T𝑓 T3𝑓 | 𝐽𝑖 𝑀𝑖 T𝑖 T3𝑖 ± 1 ⟩∣2 . (5.3)

The spin eigenstates | 𝐽 𝑀 ⟩ are orthonormal, as are the isospin eigenstates | T T3 ⟩, so this

may be rewritten as

𝐵(F±) 𝛿𝐽𝑖𝐽𝑓
𝛿𝑀𝑖𝑀𝑓

= 𝑔2
𝑉 𝛿𝐽𝑖𝐽𝑓

𝛿𝑀𝑖𝑀𝑓
𝛿T𝑖T𝑓

𝛿T3𝑖±1,T3𝑓
(T𝑖 ∓ T3𝑖)(T𝑖 ± T3𝑖 + 1) (5.4)

Assuming that 𝐽𝑓 = 𝐽𝑖, 𝑀𝑓 = 𝑀𝑖, T𝑓 = T𝑖, and T3𝑓 = T3𝑖 ± 1 allows one set all of the

Kronecker deltas to unity to obtain

𝐵(F±) = 𝑔2
𝑉 (T𝑖 ∓ T3𝑖)(T𝑖 ± T3𝑖 + 1). (5.5)

For a nuclear Hamiltonian that is isospin invariant (so that T and T3 are good quantum

numbers), the results above demonstrate that the reduced Fermi matrix element 𝐵(F±)
1The Clebsch-Gordan coefficient identity (𝐽𝑖 𝑀𝑖 0 0 | 𝐽𝑓 𝑀𝑓) = 𝛿𝐽𝑖𝐽𝑓

𝛿𝑀𝑖𝑀𝑓
was also used to obtain

the result in eq. (5.2).
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represents a transition between an initial state | 𝐽𝑖 𝑀𝑖 T𝑖 T3𝑖 ⟩ and a unique corresponding

state |IAS±⟩ = | 𝐽𝑖 𝑀𝑖 T𝑖 T3𝑖 ± 1 ⟩ in the neighboring isobar2 with proton number 𝑍𝑓 =

𝑍𝑖 ∓1. All quantum numbers remain unchanged after the transition except for the isospin

projection (and the neutron and proton numbers). The ket for the isobaric analog state

may be written in the form

|IAS±⟩ = 1
√(T𝑖 ∓ T3𝑖)(T𝑖 ± T3𝑖 + 1)

𝑇± | 𝐽𝑖 𝑀𝑖 T𝑖 T3𝑖 ⟩ (5.6)

whenever the denominator is nonvanishing. Additional analog states (one for each of the

2𝑇𝑖 + 1 isospin projections) may be found in other isobars by repeated application of the

Fermi operators 𝑇±.

Although the strong interaction is thought to be invariant under rotations in isospace,3

this symmetry is broken in the nuclear Hamiltonian because of the proton-neutron mass

difference and the Coulomb interaction between the protons.4 Thus, the isobaric analog

state will not be a true energy eigenstate, and the total Fermi strength 𝐵(F±) calculated

in eq. (5.5) will be somewhat fragmented across multiple nuclear energy levels. Because

the symmetry-breaking effects are relatively small, however, isospin invariance remains a

good approximation, and experiments (like those that will be discussed momentarily for
40Ar) typically find that the Fermi strength is concentrated in transitions to a single final

energy level or a narrow band of excitation energies.

Based on empirical observations, most nuclear ground states5 can be assigned the

total isospin quantum number T𝑖 = |T3𝑖| = 1
2 |𝑁𝑖 − 𝑍𝑖|, where 𝑁𝑖 and 𝑍𝑖 are the neutron

and proton numbers, respectively. Equation (5.5) implies that the reduced Fermi matrix

element 𝐵(F±) for a transition from such a ground state to its corresponding isobaric
2Isobars are nuclei that share the same mass number 𝐴.
3A small isospin-symmetry-breaking term could possibly exist in the strong Lagrangian, but no ex-

perimental evidence for such a term has yet been seen [365].
4Both of these effects give rise to an isovector term in the nuclear Hamiltonian, while the Coulomb

interaction also leads to an isotensor term [260].
5Exceptions exist for some 𝑁 = 𝑍 odd-odd nuclei [366].
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analog state is given by

𝐵(F±) =
⎧{
⎨{⎩

𝑔2
𝑉 |𝑍𝑖 − 𝑁𝑖| ±(𝑍𝑖 − 𝑁𝑖) > 0

0 otherwise.
(5.7)

Therefore, in the limit of perfect isospin symmetry, and for 𝑔𝑉 = 1, one may estimate

model-independently that 𝐵(F−) ≈ 4 for transitions from the ground state of 40Ar (which

has 𝑍𝑖 = 18 and 𝑁𝑖 = 22) to a single isobaric analog state in 40K, and that it will vanish

for all other transitions.

5.1.2 The Gamow-Teller matrix element

While the Fermi operator 𝑇± commutes with all but a few small isospin-symmetry-

breaking terms in the nuclear Hamiltonian, the Gamow-Teller operator ∑𝐴
𝑘=1 𝝈(𝑘) 𝑡−(𝑘)

additionally fails to commute with spin-dependent terms in the effective strong interac-

tion between nucleons. As a result, instead of the modest fragmentation seen for the

Fermi strength, one would expect the reduced Gamow-Teller matrix element 𝐵(GT±)

to be nonvanishing for many final nuclear levels (subject to the selection rules given in

eq. (3.216)) across a broad range of excitation energies.

This expectation was first experimentally confirmed by Doering et al. [367] in 1975

with the observation of a broad peak attributable to Gamow-Teller transitions in the

differential cross section for the 90Zr(𝑝, 𝑛)90Nb reaction (see fig. 5.1). Their discovery

of this Gamow-Teller giant resonance (GTGR) was soon replicated in 1980 by Bainum

and collaborators [368] at higher proton bombarding energy. Observations of similar

resonances in other nuclei (e.g., for a 48Ca target [369]) were made around the same time,

confirming that the GTGR is a general feature of nuclear structure. Systematic studies

of the GTGR in many nuclei show that the position of its excitation energy centroid 𝐸𝐺𝑇

relative to the excitation energy of the isobaric analog state6 𝐸𝐹 may be estimated using

the formula [370]

𝐸𝐺𝑇 − 𝐸𝐹 = [26 𝐴−1/3 − 18.5 (𝑁𝑖 − 𝑍𝑖)/𝐴] MeV. (5.8)

6Or, in cases where the Fermi strength is noticeably fragmented, the centroid of the Fermi resonance
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Figure 5.1: Early observations of the Gamow-Teller giant resonance (GTGR) in
90Zr(𝑝, 𝑛)90Nb scattering experiments. LEFT: Measurement of the differential cross
section at 0° performed by Doering et al. [367]. An incident proton kinetic energy of
45 MeV was used. The broad peak to the left of that corresponding to the isobaric
analog state (labeled IAS in the figure) is identified as the GTGR. RIGHT: Neutron
time-of-flight spectra obtained by Bainum et al. [368] for a proton kinetic energy of

120 MeV and laboratory scattering angles of 0.2°, 5.0°, and 9.9°. The peaks labeled 𝑑
and 𝑒 correspond to the isobaric analog state and the GTGR, respectively.

Based solely on the commutation properties of the spin and isospin operators, it can

be shown [260] that the total Gamow-Teller strength 𝑆±
𝐺𝑇, defined by

𝑆±
𝐺𝑇 ≡ ∑

𝑓
𝐵(GT±) = ∑

𝑓

𝑔2
𝐴 ∣⟨𝐽𝑓 ∥ ∑𝐴

𝑘=1 𝝈(𝑘) 𝑡±(𝑘) ∥ 𝐽𝑖⟩∣
2

2𝐽𝑖 + 1
(5.9)

where the sum is over all possible nuclear final states, obeys the Ikeda sum rule7 [371]

𝑆−
𝐺𝑇 − 𝑆+

𝐺𝑇 = 3 𝑔2
𝐴(𝑁𝑖 − 𝑍𝑖) (5.10)

where 𝑁𝑖 (𝑍𝑖) is the neutron (proton) number of the initial state. This sum rule relies on

the assumption that only nucleon states (rather than, e.g., Δ resonance states) are needed
7This sum rule appears more commonly in the literature without the factor of 𝑔2

𝐴. In such
cases, the definition for the Gamow-Teller reduced matrix element that has been chosen, 𝐵(GT−) ≡
∣⟨𝐽𝑓 ∥ ∑𝐴

𝑘=1 𝝈(𝑘) 𝑡−(𝑘) ∥ 𝐽𝑖⟩∣
2
/ (2𝐽𝑖 + 1), does not include the weak axial-vector coupling constant.
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to fully describe the nuclear response to the Gamow-Teller operator, but it is otherwise

model-independent [100].

Despite the theoretical robustness of the Ikeda sum rule, experimental measurements

have consistently found that the integrated strength of the GTGR is “quenched’’ with

respect to its sum rule value. That is, the ratio

𝑅𝐺𝑇 ≡
𝑆−

𝐺𝑇 − 𝑆+
𝐺𝑇

3 𝑔2
𝐴(𝑁𝑖 − 𝑍𝑖)

(5.11)

is typically found to have the value 𝑅𝐺𝑇 ≈ 0.5 when the summed Gamow-Teller strengths

𝑆±
𝐺𝑇 include contributions from all levels up to just above the GTGR [372, 373]. Theo-

retical predictions of the total Gamow-Teller strength and the strengths for transitions

to individual nuclear levels are commonly brought into good agreement with beta decay

and nuclear scattering measurements by rescaling the axial-vector coupling constant 𝑔𝐴,

that is, by using the effective value

𝑔eff
𝐴 = 𝑄𝐺𝑇 𝑔𝐴, (5.12)

where the quenching factor 𝑄𝐺𝑇 is some fraction, say 𝑄𝐺𝑇 = 0.77 [374] or 𝑄𝐺𝑇 = 0.68

[375]. While satisfactory calculations may be achieved using this method, many years of

theoretical work8 attempting to account for the “missing’’ Gamow-Teller strength have

not yet resulted in consensus about the correct explanation for the observed quenching

[100].

Although a model-independent prediction for the strengths of individual Gamow-Teller

transitions is not available, experimental measurements and theoretical calculations of

𝐵(GT) have both been performed for 40Ar. In the next section, we examine the first

of two experimental techniques that have been used to determine the allowed matrix

elements: extraction of 𝐵(F) and 𝐵(GT) for 40Ar using the closely related 𝛽+ decay of
40Ti.

5.2 Measurement via mirror beta decay

Under the allowed approximation, it can be shown (see appendix C) that the transition

rate Γ𝑓 for 𝛽± decay to a specific final nuclear level 𝑓 is given in the rest frame of the
8See, e.g., [100, 376] for reviews of the relevant literature.
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initial nucleus by

Γ𝑓 = 𝐺𝐹 |𝑉𝑢𝑑|2

2𝜋3 [𝐵𝑓(𝐹±) + 𝐵𝑓(𝐺𝑇±)] ∫
𝑄0

𝑚ℓ

𝐸ℓ |𝐩ℓ|
2 (𝑄0 − 𝐸ℓ)

2 𝑑𝐸ℓ, (5.13)

where the Q-value 𝑄0 = 𝑚𝑖 − 𝑚𝑓 is the difference between the initial and final nuclear

masses, 𝐺𝐹 is the Fermi coupling constant, 𝑉𝑢𝑑 is the CKM matrix element connecting

the up and down quarks, and 𝑚ℓ, 𝐸ℓ, and 𝐩ℓ are respectively the mass, total energy, and

3-momentum of the final-state (anti)lepton, which is either an electron (for 𝛽− decay)

or a positron (for 𝛽+ decay). Although beta decay from the ground state of 40Ar is

energetically forbidden,9 the ground state of 40Ti, its mirror nucleus,10 is unstable to 𝛽+

decay. Under the assumption of isospin invariance, the 40Ar ground state (with T = 2,

T3 = +2) and the 40Ti ground state (with T = 2, T3 = −2) will be isobaric analogs of

each other, and the matrix elements governing allowed 𝛽+ decay from 40Ti to final levels in
40Sc will be equal to their counterparts for the charged current reaction 40Ar(𝜈𝑒, 𝑒−)40K,

i.e.,

𝐵𝑓(𝐹−)40Ar = 𝐵𝑓(𝐹+)40Ti 𝐵𝑓(𝐺𝑇−)40Ar = 𝐵𝑓(𝐺𝑇+)40Ti (5.14)

for corresponding transitions.

5.2.1 Equality of the allowed matrix elements for mirror nuclei

To see why these matrix elements must be equal if isospin is a good symmetry, note

that, since spin and isospin are isomorphic, the Wigner-Eckart theorem may be applied

in isospace just as easily as in spin space. For the 𝑀th component of a rank 𝐿 spherical

tensor operator 𝑇𝐿𝑀 in isospace, eq. (3.140) allows one to write

⟨𝜁′ 𝑗′ T ′ T ′
3 ∥ 𝑇𝐿𝑀 ∥ 𝜁 𝑗 T T3⟩ = 1√

2T ′ + 1
(T T3 𝐿 𝑀 | T ′ T ′

3 ) ⟨𝜁′ 𝑗′ T ′��𝐓𝐿
��𝜁 𝑗 T ⟩,

(5.15)

where double bars ∥ are used when writing a spin-reduced matrix element, 𝜁 and 𝜁′ denote

all quantum numbers needed to specify the states that are not written explicitly, and we
9The neighboring isobars 40K and 40Cl have ground state masses that are, respectively, about

1.5 MeV and 7.5 MeV above the 40Ar ground state.
10i.e., the nucleus obtained when all of the protons are replaced with neutrons and vice-versa
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have defined the doubly-reduced (i.e., reduced in both spin space and isospace) matrix

element ⟨𝜁′ 𝑗′ T ′��𝐓𝐿
��𝜁 𝑗 T ⟩, which is written with triple bars

��. Note that eqs. (3.17)

and (3.112) imply that the spherical components of the isospin operator 𝐭 are given by

𝑡±1 = ∓ 1√
2

𝑡± 𝑡0 = 𝑡3 = 𝑡𝑧 (5.16)

with similar expressions for the components of the total isospin operator 𝐓 from eq. (3.24).

One may apply eqs. (5.15) and (5.16) to the spin-reduced Fermi matrix elements 𝐵(F±)

to obtain

𝐵(F±) =
𝑔2

𝑉 ∣⟨𝐽𝑓 T𝑓 T3𝑓 ∥ 𝑇± ∥ 𝐽𝑖 T𝑖 T3𝑖 ⟩∣
2

2𝐽𝑖 + 1
=

𝑔2
𝑉 ∣⟨𝐽𝑓 T𝑓 T3𝑓 ∥ ∓

√
2 𝑇±1 ∥ 𝐽𝑖 T𝑖 T3𝑖 ⟩∣

2

2𝐽𝑖 + 1

=
2𝑔2

𝑉 ∣(T𝑖 T3𝑖 1 ±1 ∣ T𝑓 T3𝑓)⟨𝐽𝑓 T𝑓

���𝐓
��� 𝐽𝑖 T𝑖 ⟩∣

2

(2𝐽𝑖 + 1)(2T𝑓 + 1)
(5.17)

If the matrix element is nonvanishing, then 𝐽𝑓 = 𝐽𝑖, T𝑓 = T𝑖, and T3𝑓 = T3𝑖 ± 1. If one

assumes that this is the case, then the expression for 𝐵(F±) becomes

𝐵(F±) =
2𝑔2

𝑉 ∣(T𝑖 T3𝑖 1 ±1 ∣ T𝑖 T3𝑖 ± 1)⟨𝐽𝑖 T𝑖

���𝐓
��� 𝐽𝑖 T𝑖 ⟩∣

2

(2𝐽𝑖 + 1)(2T𝑖 + 1)
. (5.18)

For isospin-lowering Fermi transitions from an initial nuclear state with T3𝑖 = T𝑖 (e.g.,

the ground state of 40Ar), this becomes

𝐵(F−) =
2𝑔2

𝑉 ∣(T𝑖 T𝑖 1 −1 ∣ T𝑖 T𝑖 − 1)⟨𝐽𝑖 T𝑖

���𝐓
��� 𝐽𝑖 T𝑖 ⟩∣

2

(2𝐽𝑖 + 1)(2T𝑖 + 1)
. (5.19)

On the other hand, isospin-raising Fermi transitions from the mirror nuclear state with

T3𝑖 = −T𝑖 (e.g., the ground state of 40Ti) have

𝐵(F+) =
2𝑔2

𝑉 ∣(T𝑖 −T𝑖 1 1 ∣ T𝑖 −T𝑖 + 1)⟨𝐽𝑖 T𝑖

���𝐓
��� 𝐽𝑖 T𝑖 ⟩∣

2

(2𝐽𝑖 + 1)(2T𝑖 + 1)
. (5.20)

The Clebsch-Gordan coefficients obey the symmetry identity

(𝑗1 𝑚1 𝑗2 𝑚2 ∣ 𝑗3𝑚3) = ( − 1)𝑗1+𝑗2−𝑗3(𝑗1 (−𝑚1) 𝑗2 (−𝑚2) ∣ 𝑗3 (−𝑚3)) (5.21)
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so eq. (5.20) may be rewritten as

𝐵(F+) =
2𝑔2

𝑉 ∣(T𝑖 T𝑖 1 −1 ∣ T𝑖 T𝑖 − 1)⟨𝐽𝑖 T𝑖

���𝐓
��� 𝐽𝑖 T𝑖 ⟩∣

2

(2𝐽𝑖 + 1)(2T𝑖 + 1)
. (5.22)

where the factor of (−1)T𝑖+1−T𝑖 = −1 may be dropped because it occurs within the

absolute value bars. Comparing eq. (5.19) with eq. (5.22) confirms the equality of the

matrix elements for the two types of transitions.

A nearly identical argument shows that matching Gamow-Teller transitions in mirror

nuclei will also have equal reduced matrix elements. Thus, to the extent that isospin

symmetry is a good approximation, the allowed matrix elements of interest for charged

current 𝜈𝑒 scattering on 40Ar may be determined by measuring the strengths of the

corresponding transitions from 𝛽+ decay in 40Ti.

5.2.2 40Ti 𝜷+ decay measurement

Motivated by theoretical work [377] pointing out the opportunity to make an indirect

measurement of the cross section for charged current 𝜈𝑒 scattering on 40Ar using mirror

beta decay, two groups, Liu et al., working at GSI11 [378, 379], and Bhattacharaya et al.,

working at GANIL12 [380–382], independently made the first detailed measurements13 of

the allowed matrix elements for 40Ti 𝛽+ decay in 1997. Obtaining these data required

considerable experimental sophistication, not only because of the short half-life of and

difficulty in producing 40Ti, but also because 𝛽+ decays from this nuclide populate un-

bound states in 40Sc, which immediately decay via proton emission to multiple possible

levels in 39Ca [384]. Because the techniques used by the two groups were similar, only

the approach used by Bhattacharya et al. [382] will be summarized here.

5.2.2.1 Experimental procedure

To produce the 40Ti ions needed for their measurement, Bhattacharya and collaborators

bombarded a nickel target with a 82.6 MeV/nucleon 50Cr beam. Reaction products in the

mass range of interest were selected by the LISE 3 spectrometer [385] using a combination
11Gesellschaft für Schwerionenforschung (Society for Heavy Ion Research), Darmstadt, Germany
12Grand Accélérateur National d’Ions Lourds (Large Heavy Ion National Accelerator), Caen, France
13Détraz et al. [383] were the first to study 40Ti 𝛽+ decay experimentally, but only 190 events were

observed.
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of dipole magnets and a Wien filter. The selected ions were then sent to a stack of silicon-

based charged-particle detectors labeled 𝐷1 through 𝐷5, with 𝐷1 the first to be struck by

the beam. A combination of time-of-flight and deposited energy was used to identify 40Ti

ions in the beam and reject contaminants. The thicknesses of the silicon detectors were

chosen so that the 40Ti ions were implanted within 𝐷4. Positrons from 𝛽+ decay events

within 𝐷4 were detected using 𝐷3 and 𝐷5. Beta decay events were selected by requiring

(1) a 40Ti candidate to be implanted in 𝐷4 at least five half-lives after the preceding

proton emitter, (2) a proton candidate to deposit at least 800 keV in 𝐷4 no sooner than

4 ms after ion implantation,14 and (3) a positron candidate to deposit at least 800 keV in

exactly one of 𝐷3 and 𝐷5 in coincidence with the 𝐷4 signal.

5.2.2.2 Data analysis

Two results were needed from the data analysis in order to obtain the allowed matrix

elements. The first of these was a measurement of the half-life of 40Ti, which was de-

termined using a fit to the distribution of time intervals between the implantation of a
40Ti candidate in 𝐷4 and the detection of a subsequent proton candidate. The fit was

performed using two exponentials in order to remove a component from the relatively

long-lived contaminant 38Ca, which has a half-life of 440 ms [386].

The second item needed to determine the allowed matrix elements was a set of branch-

ing ratios to each of the energy levels in the daughter 40Sc nucleus accessed via 𝛽+ decay.

Although the relative sizes of the peaks in the 𝐷4 proton energy distribution provided a

simple means of obtaining these branching ratios, associating each proton energy group

with a 40Sc level was somewhat challenging. In the energy range of interest for the exper-

iment, single proton emission was expected to be the dominant de-excitation mechanism

for the 40Sc nucleus, but this emission could occur to either the 39Ca ground state (a “𝑝0’’

decay) or to its first excited state (a “𝑝1’’ decay). Figure 5.2 is a decay scheme depicting

these two beta-delayed proton transitions.

After fitting the peaks observed in the 𝐷4 proton energy spectrum, Bhattacharya

et al. assigned a label of 𝑝0 or 𝑝1 to the proton transition associated with each peak.
14A correction was made for the dead time associated with making this timing cut.
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Figure 5.2: Decay scheme for 40Ti 𝛽+ decay. Bhattacharya et al. [382] observed
beta-delayed proton transitions to both the ground state (“𝑝0’’) and the first excited
state (“𝑝1’’) of 39Ca. Without a determination of whether a particular proton line

corresponds to a 𝑝0 or a 𝑝1 decay, the energy level of the excited 40Sc∗ nucleus originally
accessed by the 𝛽+ decay is ambiguous.

The matching 40Sc level was then determined by summing the measured proton energy,

the mass difference between the 40Sc and 39Ca ground states, and (in the case of 𝑝1

transitions) the energy of the 𝛾-ray emitted during de-excitations from the first excited

state to the ground state of 39Ca. Although detection of the coincident 𝛾-rays from 𝑝1

decays was attempted using a set of five high-purity germanium detectors, poor statistics

forced all but one of the 𝑝0 versus 𝑝1 assignments to be made based on which of the two

possible 40Sc level energies had a more plausible corresponding level in 40K, the mirror

nucleus for 40Sc.

Having measured the half-life of 40Ti and branching ratios to a number of final nuclear

levels in 40Sc, Bhattacharya et al. determined values for the allowed matrix elements

𝐵(F+) and 𝐵(GT+) using eq. (C.27). Based on the nuclear structure data available at

the time, they also assigned final levels for the mirror 40Ar → 40K transitions when a

plausible match (based on the excitation energy, spin, and parity of the corresponding
40Sc and 40K levels) could be found.

Before discussing the results obtained from 40Ti 𝛽+ decay by the Liu and Bhattacharya
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groups, we will review a complementary experimental probe of 40Ar Gamow-Teller tran-

sitions in the next section.

5.3 Measurement via (𝐩, 𝐧) scattering

A second method for measuring the allowed matrix elements was first developed around

1980 by Goodman et al. They noted that the 0° cross section15 for (𝑝, 𝑛) reactions with

a proton energy of about 100 MeV could be written in terms of CM frame quantities in

the form16 [387]

𝑑𝜎(0°)
𝑑Ω

= ( 𝜇
𝜋 ℏ2 )

2 ∣𝐤𝑓∣
|𝐤𝑖|

[𝑁𝐷
𝜏 |𝐽𝜏|2 𝑔−2

𝑉 𝐵(F−) + 𝑁𝐷
𝜎𝜏 |𝐽𝜎𝜏|2 𝑔−2

𝐴 𝐵(GT−)] , (5.23)

where 𝜇 is the reduced energy, 𝐤𝑖 (𝐤𝑓) is the momentum of the initial (final) nucleon,

𝑁𝐷
𝜏 and 𝑁𝐷

𝜎𝜏 are distortion factors, and 𝐽𝜏 and 𝐽𝜎𝜏 are interaction strengths. The pro-

portionality between the 0° cross section and the allowed matrix elements suggested that

the latter might be determined by measuring the former, but direct use of this expres-

sion by experimentalists was complicated by the presence of the distortion factors and

interaction strengths, which would need to be measured themselves.17 This situation was

soon improved by Taddeucci et al. [389, 390], who, by combining 0° (𝑝, 𝑛) cross section

measurements with known Gamow-Teller strengths 𝐵(GT−) observed via 𝛽 decay, found

that the available data were well-described by the empirical relationship

𝜎(𝐺𝑇−) 𝑔2
𝐴 / 𝐵(GT−)

𝜎(𝐹−) 𝑔2
𝑉 / 𝐵(F−)

= (
𝐸𝑝

𝐸0
)

2

. (5.24)

Here 𝜎(𝐺𝑇−) and 𝜎(𝐹−) are (𝑝, 𝑛) cross sections at 0° for a Gamow-Teller and a Fermi

transition, respectively, 𝐸𝑝 is the incident proton kinetic energy in the lab frame (which, to

ensure validity of the formula, should be in the low hundreds of MeV), and the empirical
15i.e., the cross section for (𝑝, 𝑛) reactions where the angle between the incident proton and the outgoing

neutron is 0°
16The notation from reference [387] has been altered here to account for our use of natural units and

the inclusion of the weak coupling constants 𝑔𝑉 and 𝑔𝐴 in the definitions of the allowed matrix elements
(see eqs. (3.213)–(3.214)). The cross section given here does not depend on these constants since the
(𝑝, 𝑛) reaction is governed by the residual strong force.

17Although one could potentially calculate the needed quantities, Goodman et al. claim that “reaction
theory does not have the precision required to convert reaction cross-sections to GT matrix elements with
the desired accuracy’’ [388].

158



parameter 𝐸0 had the best-fit value

𝐸0 = (55.0 ± 1.7) MeV. (5.25)

Since the early studies described here, a sizeable literature18 has emerged on experi-

mental probes of nuclear spin-isospin excitations, of which Gamow-Teller transitions are

an example. Based on the original technique developed for (𝑝, 𝑛) scattering, 0° cross

section measurements for a number of other charge-exchange reactions have been used to

extract Gamow-Teller matrix elements, including (3He,t) for isospin-lowering transitions

and (n,p), (d, 2He), and (t, 3He) for isospin-raising transitions19 [397]. Recently, it has

also been pointed out [398] that the neutral Gamow-Teller strength

𝐵(GT0) ≡
𝑔2

𝐴 ∣⟨𝐽𝑓 ∥ ∑𝐴
𝑘=1 𝝈(𝑘) 𝑡3(𝑘) ∥ 𝐽𝑖⟩∣

2

2𝐽𝑖 + 1
. (5.26)

of interest for neutral current reactions may be obtained using measurements of 0° inelastic

proton scattering cross sections.

5.3.1 Technique for extraction of Gamow-Teller strength

For the present discussion, it is sufficient to consider a method presented by Goodman

and collaborators [388] in 2001 for determining Gamow-Teller strengths 𝐵(GT−) using

measured neutron time-of-flight spectra from (𝑝, 𝑛) scattering at 0°. The method is ap-

propriate for all target nuclei with a neutron excess, i.e., 𝑁𝑖 > 𝑍𝑖. First, the time-of-flight

spectra are converted to outgoing neutron energy spectra and then to excitation energy

spectra using the length traveled from the target to the neutron detector and elementary

kinematical calculations. Second, the number of observed counts in the Fermi peak (i.e.,

the peak corresponding to transitions to the isobaric analog state) is determined. Because

the Fermi peak may not be fully resolved from a nearby Gamow-Teller peak,20 this is done
18References [362, 372, 391–395] are some of the many reviews on the subject.
19The present author’s colleagues at UC Davis may be interested to learn that, in their review of

the literature on nucleon charge-exchange reactions, Alford and Spicer [393] state that the Crocker cy-
clotron was the “first system in [the high tens to low hundreds of MeV] energy range to produce useful
measurements of (n,p) cross sections.’’ Those early measurements are described in reference [396].

20Additionally, in the case of an initial nuclear spin 𝐽𝑖 ≠ 0, the Fermi peak may contain counts from
both Fermi and Gamow-Teller transitions (see the selection rules in eqs. (3.215) and (3.216)) to the
isobaric analog state.
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by comparing two excitation energy spectra recorded using different proton bombarding

energies 𝐸𝑝 and 𝐸′
𝑝. The Fermi peak and a pure Gamow-Teller peak are identified in both

spectra. Then, for the 𝐸𝑝 (𝐸′
𝑝) spectrum, if 𝑓 (𝑓 ′) is the number of counts in the Fermi

peak that arise from true Fermi transitions, 𝑔1 (𝑔′
1) is the number of counts in the Fermi

peak that are due to Gamow-Teller transitions, and 𝑔2 (𝑔′
2) is the number of counts in

the pure Gamow-Teller peak, one may write [388]

( 𝑓
𝑔2

) = (
𝐸′

𝑝

𝐸𝑝
)

2

(𝑓 ′

𝑔′
2
) . (5.27)

This expression may be obtained using eq. (5.24) if one considers that the observed num-

bers of counts will be proportional to the corresponding cross sections. It implies that

𝑓 = (𝑔2/𝑔′
2)(𝑓 ′ + 𝑔′

1) − (𝑓 + 𝑔1)
(𝐸𝑝/𝐸′

𝑝) − 1
(5.28)

and

𝑓 ′ = (𝑔′
2/𝑔2)(𝑓 + 𝑔1) − (𝑓 ′ + 𝑔′

1)
(𝐸′

𝑝/𝐸𝑝) − 1
. (5.29)

Since (𝑓 +𝑔1) and 𝑔2 are the observed counts in the Fermi peak and the pure Gamow-

Teller peak, respectively, for the spectrum measured using the proton kinetic energy 𝐸𝑝,

and since (𝑓 ′ + 𝑔′
1) and 𝑔′

2 are the corresponding quantities for the spectrum measured

using 𝐸′
𝑝, the number of counts in each Fermi peak attributable to Fermi transitions, 𝑓

and 𝑓 ′, may be determined for both spectra. If one applies the substitutions

𝜎(𝐺𝑇−)
𝜎(𝐹−)

→ 𝑔2
𝑓

(5.30)

and (invoking eq. (5.7))

𝐵(F−) = 𝑔2
𝑉 (𝑁𝑖 − 𝑍𝑖) (5.31)

to eq. (5.24), the Gamow-Teller strength 𝐵2(𝐺𝑇−) to the nuclear level represented by the

peak containing 𝑔2 counts may be calculated via

𝐵2(𝐺𝑇−) = (𝐸0
𝐸𝑝

)
2 𝑔2

𝐴 𝑔2(𝑁𝑖 − 𝑍𝑖)
𝑓

. (5.32)
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In the expression above, 𝑔𝐴 = 1.26 should be used, since this value was assumed during

the determination of 𝐸0 (see eq. (5.25)) in reference [390]. Measurements of the Gamow-

Teller strength for the 𝑔1 peak and for the Gamow-Teller peaks in the spectrum for 𝐸′
𝑝

may be obtained using a similar procedure. If systematic errors can be neglected, then

the 𝐵(GT−) values obtained using either spectrum will match within statistics.

5.3.2 Experimental procedure

In a 2009 paper [399], Bhattacharya, Goodman, and García presented a measurement of

𝐵(GT−) strengths in 40Ar obtained using 0° (𝑝, 𝑛) scattering. The neutron time-of-flight

data needed for their analysis were obtained at IUCF21 using proton kinetic energies of

120 and 160 MeV and an 81 m flight path for the neutrons. Twelve plastic scintillator bars

were used to detect neutrons with scattering angles of (0.0 ± 0.2)° via proton recoils. A

plastic scintillator was also placed near the target to detect elastically scattered protons.

A gas cell filled with high-purity argon at 300 kPa and cooled using liquid nitrogen was

used as the target. Data were taken with the cell filled and with it evacuated to isolate

the contribution of the argon to the observed time-of-flight spectra. Reference spectra

for the 13C(𝑝, 𝑛)13N reaction, whose level structure is well understood, were used to

define an empirical peak shape. This shape was then used to fit spectra recorded using

the argon target. Gamow-Teller strengths 𝐵(GT−) were determined by comparing the

peak integrals from the two time-of-flight spectra for the 40Ar target, as described in

section 5.3.1.

5.4 Evaluated nuclear matrix elements for MARLEY

In the publications describing all three available measurements [379, 382, 399] of the

allowed matrix elements governing the reaction 40Ar(𝜈𝑒, 𝑒−)40K, attempts were made to

assign each observed transition to a known energy level in the final-state 40K nucleus.

While many of the previous level assignments remain plausible at present, new nuclear

structure data for the 𝐴 = 40 nuclides have become available in recent years. To keep

MARLEY as up-to-date as possible, a full re-evaluation of the level assignments was
21The Indiana University Cyclotron Facility

161



performed based on the 2017 revision [400] of the 40K level scheme adopted for use in the

ENSDF database.22

Table 5.1 presents the experimental matrix element data together with the 40K energy

level assignments for MARLEY, which were made on the basis of excitation energy and (if

known) spin-parity. Although Gamow-Teller transitions from the initial 40Ar nucleus can

only access 1+ levels23 in 40K, ENSDF levels with different spin-parity assignments were

matched to measured 𝐵(GT) values in cases where (1) the ENSDF evaluator regarded the

evidence for the spin-parity assignment of the candidate level as “weak,’’ and (2) another

suitable level could not be found in the appropriate excitation energy range.

5.4.1 Disagreements between the 40Ti 𝛽+𝛽+𝛽+ decay and 40Ar(𝑝, 𝑛) experiments

Figures 5.3 and 5.4 compare the Gamow-Teller strengths 𝐵(GT) from the three compet-

ing measurements discussed in this chapter. Although the two 40Ti 𝛽+ decay experiments

show reasonable agreement, obvious differences can be seen between either of those mea-

surements and the (𝑝, 𝑛) data of Bhattacharya et al. [399]. Beyond the generally less

fragmented 𝐵(GT) distribution seen in the (𝑝, 𝑛) data, which may be attributed to lim-

ited resolution, there is also a disagreement between the beta decay and (𝑝, 𝑛) datasets

over the relative strength of the two strongest Gamow-Teller transitions. All of the mea-

surements agree that the transition to the 40K level at 2.73 MeV has 𝐵(GT) ≈ 1.5.

However, the (𝑝, 𝑛) data suggest that the strength to the level at 2.29 MeV is larger,

(𝐵(GT) = 1.64(16)) while the two beta decay datasets both report smaller values consis-

tent with 𝐵(GT) ≈ 0.90.

The large discrepancy in the ratio

𝑅 = 𝐵(GT)2.73 MeV
𝐵(GT)2.29 MeV

(5.33)

obtained from the beta decay data (𝑅 ≈ 1.7 for either dataset) and the (𝑝, 𝑛) data

(𝑅 = 0.91) was recently investigated by Karakoç et al. [401]. On the basis of theoretical
22The Evaluated Nuclear Structure Data File database (see http://www.nndc.bnl.gov/ensdf/) is

maintained by the National Nuclear Data Center of Brookhaven National Laboratory.
23This follows immediately from the selection rules in eq. (3.216) if one recalls that the ground state

of 40Ar has spin-parity 0+.
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Figure 5.3: Gamow-Teller strengths 𝐵(GT) from two independent measurements of 40Ti
𝛽+ decay. The second dataset is shown with an inverted vertical axis to facilitate

comparisons.
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calculations and data from a 40Ar(3He,t)40K scattering experiment,24 they argue that

one should “use Gamow-Teller strengths extracted from the 40Ar(𝑝, 𝑛) data, not the 40Ti

𝛽-decay data, for the calculation of neutrino capture rates.’’ While it may be prudent

for MARLEY users to heed their recommendation, matrix element data files based on

the results of all three of the published measurements discussed above are nevertheless

distributed with the current version of the code. By comparing the results of MARLEY

calculations performed using the different experimental datasets, one may estimate the

degree to which the remaining uncertainties in the measurements of the Gamow-Teller

strength will impact future low-energy neutrino analyses.
24As of this writing, a detailed report of this experiment remains unpublished.
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Table 5.1: Level assignments and measured 𝐵(F) and 𝐵(GT) values for 40Ar(𝜈𝑒,𝑒−)40K

Assigned
40K 𝐸𝑥
(keV)

ENSDF [400]
spin-parity
assignmenta

Liu et al. [379]
40Ti 𝛽+ decay

Bhattacharya et al. [382]
40Ti 𝛽+ decay

Bhattacharya et al. [399]
40Ar(𝑝, 𝑛)40K

40Sc 𝐸𝑥
(keV)

𝐵(F) +
𝐵(GT)

40Sc 𝐸𝑥
(keV)

𝐵(F) +
𝐵(GT)

40K 𝐸𝑥
(keV)

Weakb

𝐵(GT)

2289.868(11) 1+ 2287(10) 0.83(8) 2281(8) 0.90(4) 2333(30) 1.64(16)
2730.357(19) 1 2761(10) 1.40(10) 2752(8) 1.50(6) 2775(30) 1.49(14)
2950.9(6) 2966(40) 0.03(1) 2937(13) 0.11(2)
3109.56(4) 1+, 2+ 3121(46) 0.06(3) 3143(20) 0.06(1)
3146.50(5) 1(−) 3235(50) 0.16(4) 3204(32) 0.06(2)
3293(10) unnaturalc 3342(40) 0.11(8) 3334(19) 0.04(1)
3439.18(3) (2+) 3418(60) 0.05(2)
3517(15) 3521(40) 0.06(2) 3569(56) 0.01(1) 3503(30) 0.16(2)
3738.49(3)d 1+ 3662(40) 0.13(7) 3652(10) 0.16(2)
3797.48(3) 1+ 3782(40) 0.40(16) 3786(10) 0.26(3)
3840.27(3) (1, 2+) 3861(49) 0.01(1) 3870(30) 0.44(5)
3996(10) unnaturalc 4033(88) 0.07(4) 4067(24) 0.05(2)
4080(5) 4194(60) 0.10(6) 4111(30) 0.11(3)
4251.70(15) (1, 2−) 4264(46) 0.15(4) 4267(10) 0.29(3)
4383.7(7)e 0+ 4365(10) 4.01(31) 4364(8) 3.84(17)
4508(15) 4540(86) 0.14(5) 4522(16) 0.31(5) 4421(30) 0.86(14)
4697(10) unnaturalc 4628(40) 0.33(9) 4655(12) 0.38(6)
4765(5) (1)+ 4782(60) 0.26(11) 4825(21) 0.47(8) 4763(30) 0.48(5)
4930(10) unnaturalc 4997(72) 0.24(10) 5017(27) 0.36(9)
5063.37(7) (2−, 3+) 5051(40) 0.25(11) 5080(35) 0.23(7)
5189.89(5) (2−) 5135(86) 0.20(6) 5223(32) 0.03(3) 5162(30) 0.59(6)
5247.1(6) 5362(60) 0.19(7)
5488.65(17) (2−, 3, 4−) 5574(40) 0.07(4)
5681(32) 5777(60) 0.21(15) 5696(23) 0.11(4) 5681(32) 0.21(3)
5870(20) 5886(80) 0.17(7)
6118(30) 6126(60) 0.13(7) 6006(21) 0.13(5) 6118(30) 0.48(5)
6790(30) 6426(60) 0.11(6) 6790(30) 0.71(8)
7468(37) 7468(37) 0.06(2)
7795(33) 7795(33) 0.14(2)
7952(32) 7952(32) 0.97(10)

Totalf 𝐵(GT) 5.84(39) 5.52(20) 8.29(31)
aParenthesized values are based upon weak arguments [402].
bReference [399] uses a definition of 𝐵(GT) different from our “weak 𝐵(GT)’’ convention. See section 5.3.
cA nuclear level with parity Π and spin 𝐽 has natural parity if Π = (−1)𝐽. Otherwise it has unnatural parity.
dAnother candidate 40K level for this transition has 𝐸𝑥 = 3663.88 keV and 𝐽𝜋 = (1−, 2, 3, 4+).
eThis level is the isobaric analog of the 40Ar ground state.
fGamow-Teller transitions are assumed for all levels other than the isobaric analog state.
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Figure 5.4: Comparison of the Gamow-Teller strengths 𝐵(GT) measured using 40Ti 𝛽+

decay (see fig. 5.3) with those obtained using a 0° (𝑝, 𝑛) scattering experiment. The
sensitivity of the 𝛽 decay experiments above 6.5 MeV (marked by the dashed line) was
very limited. Liu et al. note that, for a 40Sc level at this excitation energy, a 𝐵(GT)
value of 0.1 corresponds to a branching fraction of only 0.1% due to the phase space
factor for allowed 𝛽 decay. Detector effects further complicate extraction of 𝐵(GT)

values from 𝛽 decays to higher excitation energies [379].
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5.4.2 High-lying Gamow-Teller strength

Notwithstanding the need to carefully examine the differences between the existing mea-

surements of the 40Ar allowed matrix elements, a more challenging consideration for super-

nova neutrino detection is the currently unmeasured portion of the Gamow-Teller strength

predicted by the Ikeda sum rule. Equation (5.10) implies that the integral of 𝐵(GT−)

over all final 40K levels must have as its minimum possible value 𝑆−
𝐺𝑇 = 12 𝑔2

𝐴 ≈ 19. Com-

paring this lower limit to the 𝐵(GT−) sums given in the last row of table 5.1 reveals that

the currently available measurements can account for less than 50% of the total expected

strength. The remaining Gamow-Teller transitions will access highly-excited levels in the

final-state 40K nucleus beyond the 6 to 8 MeV maximum excitation energy probed to

date by experiments.

Since, according to eq. (5.8), the centroid of the GTGR for 40Ar should be located at an

excitation energy of about 10 MeV in the daughter 40K nucleus, one can expect that many

of the unmeasured Gamow-Teller transitions will be kinematically accessible for supernova

𝜈𝑒 with tens-of-MeV energies. These transitions will populate nucleon-unbound25 states

for which neutron emission will be a dominant de-excitation mode. Because such de-

excitations will be challenging to accurately reconstruct in a LArTPC, simply neglecting

the high-lying GT strength in a model of the response of 40Ar to supernova neutrinos

would lead to overly optimistic sensitivity estimates.

While a number of theoretical predictions of the 40Ar(𝜈𝑒, 𝑒−)40K cross section exist

in the literature (see chapter 7 for a brief review), most publications on the subject do

not include an explicit calculation of the reduced matrix elements 𝐵(GT−) needed to

evaluate the allowed approximation cross section given in eq. (3.220). An exception is

a 2012 paper by Cheoun, Ha, and Kajino [288] in which both 𝐵(GT−) and 𝐵(GT+)

strengths are obtained for 40Ar over the entire energy range of interest for supernova

neutrinos. Their results, which were calculated using the Quasiparticle Random Phase

Approximation (QRPA), are shown in fig. 5.5 and compared with the experimental data
25The proton and neutron separation energies for 40K are 7.582(5) MeV and 7.799 62(6) MeV,

respectively [400].
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Figure 5.5: Theoretical Gamow-Teller strengths 𝐵(GT−) for 40Ar(𝜈𝑒, 𝑒−)40K calculated
using the Quasiparticle Random Phase Approximation (QRPA)
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in fig. 5.6.

An examination of the latter figure reveals reasonably close agreement at 7.5 MeV

between the integrated 𝐵(GT−) strengths obtained from the QRPA calculation and from

the 𝛽 decay data. However, the theoretical prediction concentrates nearly all of this

strength in two transitions to 40K levels around 7 MeV, while the experiments demonstrate

that the strength is actually highly fragmented. Although results obtained using the

nuclear shell model show better agreement [282, 377] with the data,26 nuclear effective

potentials used in the shell model are typically designed with only low energies in mind,

and calculations at several tens of MeV are computationally infeasible due to the large

number of states that must be considered [225]. The QRPA solves the second of these two
26This is achieved by applying a quenching factor of 𝑄𝐺𝑇 = 0.775 to the weak axial-vector coupling

constant (see section 5.1.2). The validity of this procedure is unclear for neutrinos at supernova energies
[225]. Cheoun et al. [288] did not use a quenching factor in their QRPA calculation.
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Figure 5.6: Running sums of 𝐵(GT) from three experimental measurements and a
QRPA calculation as a function of 40K excitation energy. Although the theoretical

prediction fails to reproduce the observed fragmentation of the Gamow-Teller strength
at low energies, the predicted integrated strength at 7.5 MeV nearly matches that of the

40Ti 𝛽+ decay measurements at around the same excitation energy.
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problems by considering only a small subset of the possible nuclear configurations. This

choice extends the excitation energy reach of the model but artificially restricts the degree

of fragmentation that can be produced [200]. The disagreement between the data and the

QRPA prediction over how the GT− strength is distributed below 7 MeV is symptomatic

of this defect of the model.

If one is willing to tolerate the limitations of the QRPA, the calculation of Cheoun

et al. may be used together with the experimental data to create a complete set of GT

matrix elements. Because the Ikeda sum rule is nearly satisfied (to about 7%) by the

theoretical calculation,27 such a set of matrix elements will include essentially all of the
27Cheoun et al. suggest that this discrepancy might arise because of the lack of exact nucleon number

conservation in the QRPA [288].
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expected total strength. While combining experimental and theoretical matrix elements

in this way may be difficult to do in general, the good agreement between the QRPA

and the 𝛽 decay data seen in the integrated GT− strength at 7.5 MeV suggests that the

two may be straightforwardly merged by (1) computing the total GT− strength measured

by a particular experiment, (2) finding the 40K excitation energy 𝐸𝑥,QRPA for which the

theoretical integrated GT− strength first exceeds the experimental total, (3) including

only measured 𝐵(GT−) values (from the experiment of interest) for transitions to 40K

levels below the “theory threshold’’ 𝐸𝑥,QRPA, and (4) using QRPA 𝐵(GT−) values for

transitions to 40K levels above 𝐸𝑥,QRPA.

Using the procedure outlined above, three complete matrix element datasets, one

based on each of the experiments discussed in this chapter, were prepared for the current

version of MARLEY. Figure 5.7 shows the matrix elements included in each dataset,

with different colors used to distinguish experimental from theoretical values of 𝐵(GT−).

Since both 40Ti 𝛽+ decay experiments measured values of 𝐵(F−) consistent with the

sum rule prediction (see section 5.1.1), a single Fermi transition to the isobaric analog

state28 with 𝐵(F−) = 4 was included in each dataset. Figure 5.8 compares the running

sums of 𝐵(GT−) from each dataset to that of the QRPA calculation by Cheoun et al.

[288]. As expected, “stitching together’’ the theoretical matrix elements and either of the

two 𝛽 decay measurements (as was done to create datasets B and C) yields an integrated

𝐵(GT−) curve that is nearly the same as the original QRPA calculation above 𝐸𝑥,QRPA ≈

7.5 MeV. Less satisfactory results are obtained for MARLEY dataset A, which is based

on the (𝑝, 𝑛) data. However, given the inability of the QRPA to reproduce the individual

𝐵(GT) strengths below 7 MeV, one should regard the theoretical calculation as only a

rough estimate of the true GT strength distribution. As more detailed calculations (or,

better still, measurements) of the high-lying GT strength distribution become available

for 40Ar, MARLEY will be able to move beyond its use of these QRPA strengths as a

first approximation.

284.3837 MeV above the 40K ground state
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Figure 5.7: The three allowed matrix element datasets for charged current 𝜈𝑒 scattering
on 40Ar distributed with the current version of MARLEY
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Figure 5.8: Comparison of the integrated 𝐵(GT) curves for the three allowed matrix
element datasets for 40Ar(𝜈𝑒, 𝑒−)40K distributed with the current version of MARLEY.

A corresponding curve for the QRPA calculation that provided 𝐵(GT) values for
high-lying Gamow-Teller transitions in all three datasets is also shown.
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Chapter 6

Monte Carlo implementation

To enable practical calculations to be performed using the models and nuclear data dis-

cussed in the previous three chapters, a Monte Carlo event generator called MARLEY

(Model of Argon Reaction Low Energy Yields) was created. While the ultimate goal

of the code is to become a general-purpose generator for neutrino-nucleus scattering at

tens-of-MeV and below, the current version focuses solely on simulating the charged cur-

rent reaction 40Ar(𝜈𝑒, 𝑒−)40K. In the following sections, the procedure followed by the

MARLEY code for generating neutrino scattering events is briefly reviewed. A summary

of the event generation workflow is given in the flowchart in fig. 6.1.

6.1 Generator initialization

The MARLEY command-line program takes as input the name of a configuration file

which contains, at a minimum, two pieces of information. The first of these is the name

of a reaction data file that specifies the set of allowed matrix elements to be used when

calculating cross sections. Although multiple reactions may be defined in the configuration

file, only reaction data files for 40Ar(𝜈𝑒, 𝑒−)40K are currently distributed with the code.

Each reaction data file lists the initial and final particle ID numbers (using the conventions

defined by the Particle Data Group [78]), a descriptive string, and a table of the allowed

nuclear matrix elements.

The second required piece of input data is a specification of the incident (i.e., not

weighted by the reaction cross section) neutrino energy spectrum. This may be done
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15

MARLEY event generaton fowchart

Nuclear de-excitaton model

Figure 6.1: Flowchart showing the procedure followed by MARLEY for creating
simulated neutrino-nucleus scattering events.

using one of several built-in spectra (e.g., a muon decay-at-rest spectrum, a Fermi-Dirac

distribution), a user-defined histogram, or a user-defined function evaluated by interpo-

lating between a list of (energy, flux) ordered pairs.

Beyond the two required inputs, the user may specify the paths to one or more nuclear

structure data files (which contain energies, spin-parities, and 𝛾-ray branching ratios for

the nuclear energy levels of one or more nuclides), a desired number of events, one of

several output formats, and a variety of other configuration options. Documentation

describing the configuration file format is available from the official MARLEY website

(https://www.marleygen.org) and in the forthcoming MARLEY user manual.

Before entering the event loop, the reaction data and incident neutrino spectrum

specified by the user are used to calculate an energy spectrum for reacting neutrinos.

This spectrum is computed by multiplying the incident neutrino spectrum by the sum

of the total cross sections for each of the defined reactions. The resulting spectrum is
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normalized to unity to obtain a probability density function 𝑃(𝐸𝜈) for sampling reacting

neutrino energies:

𝑃(𝐸𝜈) =
𝜓reacting(𝐸𝜈)

∫𝐸max

𝐸min
𝜓reacting(𝐸) 𝑑𝐸

=
𝜓incident(𝐸𝜈) ∑𝑟 𝜎𝑟(𝐸𝜈)

∫𝐸max

𝐸min
[𝜓incident(𝐸) ∑𝑟 𝜎𝑟(𝐸)] 𝑑𝐸

. (6.1)

Here the sums ∑𝑟 include all defined reactions, and the integration in the denominator is

over the full energy interval over which the incident spectrum is defined. The total cross

sections are computed by using the allowed approximation (see eq. (3.220)) and summing

the contributions of all kinematically-accessible final nuclear levels.

6.2 2→2 scattering reaction

After preparing the reacting neutrino energy spectrum, the MARLEY code enters the start

of the event loop, which repeats until the desired number of events specified by the user

have been created. To begin a new event, a reacting neutrino energy 𝐸𝜈 is sampled from

the probability density 𝑃(𝐸𝜈) given in eq. (6.1). This sampling, like all other sampling

from continuous probability distributions in the MARLEY code, is performed using a

simple rejection technique. First, the maximum of the probability density 𝑃max is found

numerically using Brent’s method1 [403]. After the maximum is found, ordered pairs

(𝐸𝜈, 𝑦) are sampled from uniform distributions on 𝐸𝜈 ∈ [𝐸min, 𝐸max] and 𝑦 ∈ [0, 𝑃max].

If a sampled point has 𝑦 ≤ 𝑃(𝐸𝜈), the sampled neutrino energy 𝐸𝜈 is accepted, and the

rest of the simulation proceeds. If 𝑦 > 𝑃(𝐸𝜈), the sampled energy is rejected, and a

new energy is sampled repeatedly until one is accepted. Although the incident spectrum

(and therefore reacting neutrino energy 𝐸𝜈) is specified in the lab frame by the user, all

calculations for simulating the 2→2 scattering reaction are evaluated internally in the CM

frame.

Once a reacting neutrino energy has been found, if multiple reactions are defined, then

a specific reaction 𝑟 is chosen with probability

𝑃(𝑟) = 𝜎𝑟(𝐸𝜈)
∑𝑠 𝜎𝑠(𝐸𝜈)

(6.2)

1A robust minimization algorithm for one-dimensional functions. The method does not involve the
use of numerical differentiation.
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where the 𝜎𝑟(𝐸𝜈) are total reaction cross sections (including contributions from all accessi-

ble final-state nuclear levels) and the sum in the denominator is over all defined reactions.

To sample from the discrete distribution defined by the reaction probability mass function

shown in eq. (6.2), MARLEY computes the cumulative distribution function for the 𝑟th

reaction via

𝐶(𝑟) =
𝑟

∑
𝑘=1

𝑃(𝑘) (6.3)

for 𝑘 ∈ {1, 2, 3, ⋯ , 𝑟} and 𝐶(0) ≡ 0. After sampling a uniform random number 𝜉 on

the interval (0, 1], the reaction 𝑟 for which 𝐶(𝑟 − 1) < 𝜉 ≤ 𝐶(𝑟) is selected. A similar

technique is used to sample from all other discrete probability distributions of interest for

MARLEY.

Once a unique reaction has been determined for the current event, MARLEY samples

a specific energy level 𝐿 of the final-state nucleus with probability

𝑃(𝐿) = 𝜎𝑟(𝐸𝜈, 𝐿)
𝜎𝑟(𝐸𝜈)

(6.4)

where 𝜎𝑟(𝐸𝜈, 𝐿) is the partial cross section to the 𝐿th final level, and the total cross

section 𝜎𝑟(𝐸𝜈) may be expressed in terms of the partial cross sections via

𝜎𝑟(𝐸𝜈) = ∑
𝐿

𝜎𝑟(𝐸𝜈, 𝐿). (6.5)

Following selection of the final-state nuclear level 𝐿, an azimuthal angle for the outgo-

ing charged lepton (currently always an electron) is sampled uniformly on the half-open

interval [0, 2𝜋). None of the differential cross sections of interest for MARLEY have any

dependence on the electron’s azimuthal angle, as discussed in chapter chapter 3. A polar

angle cosine cos 𝜃𝑒 for the outgoing electron is also sampled on the interval [−1, 1] from

the probability density function

𝑃(cos 𝜃𝑒) = 1
𝜎𝑟(𝐸𝜈, 𝐿)

𝑑𝜎𝑟(𝐸𝜈, 𝐿)
𝑑 cos 𝜃𝑒

(6.6)

where the differential cross section for the 𝐿th final level 𝑑𝜎𝑟(𝐸𝜈, 𝐿)/𝑑 cos 𝜃𝑒 is computed

according to eq. (3.219). As the notation for the differential cross section suggests, the

integral of the differential cross section over all possible polar angle cosines is the partial
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reaction cross section to level 𝐿:

𝜎𝑟(𝐸𝜈, 𝐿) = ∫
1

−1

𝑑𝜎𝑟(𝐸𝜈, 𝐿)
𝑑 cos 𝜃𝑒

𝑑 cos 𝜃𝑒. (6.7)

After obtaining a direction in the CM frame for the outgoing electron, MARLEY

uses conservation of 4-momentum to determine the full 4-momenta of the electron and

final-state nucleus in the CM frame. A Lorentz boost is then applied to re-express the

4-momenta in the laboratory frame.

6.3 Nuclear de-excitations

Once simulation of the initial 2→2 scattering reaction is complete, MARLEY enters a

nuclear de-excitation loop. At each stage of the loop, information about the current

energy level of the recoiling nucleus is obtained from the nuclear structure data loaded

into memory during the initialization step. If the current level corresponds to the nuclear

ground state, the de-excitation loop terminates, and the event is complete.

If the current level is an unbound excited state, i.e., it has an excitation energy above at

least one of the emission thresholds for nuclear fragments with mass number 𝐴 ≤ 4,2 then

MARLEY computes Hauser-Feshbach decay widths Γ𝛼 for each possible de-excitation

channel 𝛼 using the expressions given in chapter 4. These are computed individually

for accessible discrete energy levels included in the input nuclear structure data. De-

excitations to the continuum (which is considered to begin for each nuclide just above its

tabulated nuclear level with the highest excitation energy) are also considered by inte-

grating over the accessible continuum as shown in eq. (4.26). A particular de-excitation

channel 𝛼 is sampled using the calculated decay widths with probabilty

𝑃(𝛼) = Γ𝛼
∑𝛽 Γ𝛽

. (6.8)

If a de-excitation to the continuum bin is selected, then a unique value of the total kinetic

energy in the CM frame 𝜀 is sampled from the probability density function

𝑃(𝜀) =
∑ℓ𝑗 𝛿𝜋 𝑇ℓ𝑗(𝜀) 𝜌𝑓(𝐸′

𝑥(𝜀), 𝐽 ′, Π′)

∑ℓ𝑗 𝛿𝜋 ∫𝜀max

0
𝑇ℓ𝑗(𝜀) 𝜌𝑓(𝐸′

𝑥(𝜀), 𝐽 ′, Π′) 𝑑𝜀.
(6.9)

2Explicitly, these are neutrons, protons, deuterons, tritons, helions, and alpha particles.
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where all symbols are defined as in eq. (4.26) except that the maximum total CM frame

kinetic energy 𝜀max is the maximum possible within the range of excitation energies defined

by the boundaries of the continuum. Once a value of 𝜀 has been determined, elementary

kinematical calculations are used to assign 4-momenta to the outgoing fragment and the

daughter nucleus.

If the current level is a bound excited state, i.e., it has a nonzero excitation energy

but is below all of the nuclear fragment emission thresholds, then MARLEY consults its

internal nuclear structure database to determine whether a table of 𝛾-ray intensities is

available for the level. If such a table was included in the input data provided in the

initialization step, then a 𝛾-ray transition 𝛾𝑗 is sampled with probability

𝑃(𝛾𝑗) =
𝐼𝑗

∑𝑘 𝐼𝑘
(6.10)

where 𝐼𝑗 is the tabulated intensity of the 𝑗th 𝛾-ray for the current level and the sum in

the denominator runs over all 𝛾-ray transitions from that level that are included in the

tabulated data. If a table of 𝛾-ray intensities cannot be found for the current level, then

MARLEY follows the same procedure as for the unbound nuclear levels.

At the end of each de-excitation step, all particle 4-momenta are Lorentz transformed

into the laboratory frame. The de-excitation loop continues until the ground state is

reached, or, in cases where no discrete level data are available for a particular final-state

nucleus, until the excitation energy of the current level falls below 1 keV.

6.4 Completing the event

For convenience during its internal calculations, MARLEY assumes that the incident

neutrino direction lies along the positive z axis. This is also assumed in the output unless

the user specifies another direction in the configuration file. After the de-excitation loop

has terminated, all particle momentum vectors are appropriately rotated as needed to

account for the neutrino direction selected by the user.

At the end of every iteration of the event loop, a marley::Event C++ object is

created in memory. This object stores all of the particle 4-momenta for the initial and

final states, and it also includes the initial excitation energy of the recoil nucleus created
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during the 2→2 scattering step. When MARLEY is used via its command-line executable,

the marley::Event object is written to disk in one of several possible formats. When

MARLEY is called as an external library within a particle transport framework such as

Geant4, the marley::Event object may be used to supply initial 4-momenta for particles

produced during a low-energy neutrino scattering event.

After the generated event is saved to disk or used as an input for a particle transport

simulation, the event generation loop repeats until the desired number of events specified

by the user has been reached. In the following chapter, example simulation results ob-

tained using MARLEY on its own and in combination with LArSoft [165], a Geant4-based

LArTPC simulation code (see section 2.5), will be presented.
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Chapter 7

Example simulation results

To conclude the presentation of MARLEY in this thesis, this chapter briefly reviews the

existing literature on low-energy neutrino-argon scattering, presents some example sim-

ulation results obtained using the MARLEY generator, and discusses future possiblities

for its improvement.

7.1 Previous studies of low-energy neutrino-40Ar cross sections

Interest in liquid argon as a detection medium for low-energy neutrinos, including super-

nova neutrinos, began shortly after the LArTPC was originally proposed [129] by Carlo

Rubbia in 1977. The first neutrino cross section calculation in this energy range for a 40Ar

target emerged in a pioneering 1979 AT&T Bell Laboratories technical report [404] by

Ramaswamy Raghavan. In the report, Raghavan pointed out the relatively large cross sec-

tion for 40Ar(𝜈𝑒, 𝑒−)40K scattering proceeding via Fermi transitions to the isobaric analog

state (see section 5.1.1) and argued that events of this kind could be readily identified in a

LArTPC using the final-state electron and the accompanying de-excitation 𝛾-ray cascade.

Building on this early work, Bahcall et al. published a study of solar neutrino event rates

in the ICARUS detector [405] in 1986. During that same year, in addition to publishing

an updated version [406] of his previous report, Raghavan and collaborators produced a

second article [407] that considered inelastic neutral current neutrino scattering1 on 40Ar

using a shell model calculation of the Gamow-Teller transition matrix elements. While
1This process is referred to as “NUEX’’ in the publication.
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the predicted rate of inelastic NC events generated by solar neutrinos in a LArTPC was

not entirely negligible, this early calculation was deemed “not encouraging,’’ partially be-

cause much of the neutral Gamow-Teller strength was predicted to lie above the neutron

emission threshold of 40Ar and partially because the solar neutrino NC event rate was

found to be nearly two orders of magnitude smaller than the rate for CC transitions to

the 40K isobaric analog state.

The first theoretical calculation of a cross section for charged current 𝜈𝑒 scattering

on 40Ar that included contributions from Gamow-Teller transitions was that of Ormand

et al. [377], who in 1995 used the nuclear shell model to predict solar neutrino reaction

rates in ICARUS under the allowed approximation. By 1998, two independent experi-

ments [379, 382] had made indirect measurements of the low-lying Gamow-Teller strengths

using 40Ti beta decay (see section 5.2.2). Further publications on low-energy neutrino-

argon cross sections would not emerge until 2003, when Gil-Botella and Rubbia, building

on work reported in an earlier preprint [408], published the first study [409] of supernova

neutrino event rates in a LArTPC to consider all reaction channels, including 𝜈𝑒 and

̄𝜈𝑒 charged current absorption, neutral current neutrino-argon scattering, and neutrino-

electron elastic scattering.2 Soon thereafter, Athar and Singh produced an LDA3 calcu-

lation of charged current cross sections for supernova electron (anti)-neutrinos on 40Ar

[280]. This approach was also applied to muon decay at rest neutrinos in a 2006 paper

that they published together with Ahmad [410]. Before the end of the decade, a second

experimental probe, (𝑝, 𝑛) scattering, had been used [399] to study the allowed matrix

elements for the 40Ar(𝜈𝑒, 𝑒−)40K reaction (see section 5.3).

Theoretical work on supernova neutrino cross sections for 40Ar has grown in recent

years, likely due in part to the decision by the LBNE Collaboration (the forerunner of the

present DUNE Collaboration) in January 2012 to use LArTPCs as the far detectors for the

experiment [411]. Since then, new cross section calculations have been performed using a
2Note that the cross sections used for the studies in references [408, 409] were provided to the authors

by Martinez-Pinedo et al. via private communication.
3Local Density Approximation
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variety of nuclear models, including the QRPA4 [288, 412, 413], the RQRPA5 [281, 414],

the PQRPA6 [415], the GTDB7 [415], the LDA3 [416], the nuclear shell model [225], and a

“hybrid’’ approach [282, 417]. The last of these used a shell model calculation to evaluate

the contributions of Fermi and Gamow-Teller transitions to the cross section, while the

RPA8 was used for other transitions. A similar “hybrid’’ technique was employed much

earlier [418] by Kolbe, Langanke, and Martinez-Pinedo to compute the 56Fe(𝜈𝑒, 𝑒−)56Co

total cross section.

7.2 Total cross section comparison

Given the current absence of any direct experimental measurements of neutrino-argon

cross sections in the energy range of interest for MARLEY, it is impossible to defini-

tively evaluate the quality of the 40Ar(𝜈𝑒, 𝑒−)40K cross section model implemented in the

generator. However, one may make a tentative judgment by comparing the MARLEY

model to other more detailed theoretical calculations. Figure 7.1 shows the MARLEY

total cross section for CC absorption of 𝜈𝑒 on 40Ar compared to several other predic-

tions over a wide energy range. Except for the GTBD7 cross section, which is obtained

using a very simple macroscopic nuclear model, all other non-MARLEY cross sections

shown in the figure are based on sophisticated microscopic calculations that go beyond

MARLEY’s impulse approximation treatment. Despite MARLEY’s relative simplicity, it

reproduces the general trend seen in the other calculations remarkably well, yielding a

cross section that is consistently near the middle of the various predictions. This is true

even above the 50–60 MeV energy range in which the impulse approximation begins to

become inadequate (see section 3.11).

The agreement seen between MARLEY and the other cross section models at energies

above the former’s nominal range of validity can be attributed to two compensating

deficiencies. Although the impulse approximation used in the current version of MARLEY
4Quasiparticle Random Phase Approximation
5Relativistic Quasiparticle Random Phase Approximation
6Projected Quasiparticle Random Phase Approximation
7Gross Theory of Beta Decay
8Random Phase Approximation
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treats the nuclear matrix elements as constant, a calculation accurate to first order in the

inverse nucleon mass (1/𝑚𝑁) yields nuclear matrix elements (see eqs. (3.173)–(3.176))

that depend on the spherical Bessel function 𝑗𝐽(𝜅𝑟𝑘), where 𝜅 is the magnitude of the

3-momentum transfer, 𝑟𝑘 is the radial coordinate of the 𝑘th nucleon, and 𝐽 is the multipole

order. As the neutrino energy increases, 𝜅 will also increase, and the matrix elements for

allowed (𝐽 = 0) transitions (corresponding to Fermi and Gamow-Teller transitions under

the impulse approximation) will be suppressed, while those for forbidden transitions (𝐽 >

0) will be enhanced. At high energies, then, MARLEY’s overestimate of the contributions

of the allowed transitions will be offset by its complete neglect of the forbidden ones.

Although there is no a priori reason to believe that these two effects will cancel out, they

counteract each other sufficiently well to yield a total cross section value for MARLEY in

good agreement with competing calculations.

7.3 Exclusive cross sections

In addition to the inclusive CC cross section, MARLEY’s Monte Carlo implementation of

the Hauser-Feshbach statistical model allows one to perform straightforward calculations

of partial cross sections for a number of exclusive channels. For a given neutrino energy

𝐸𝜈 and exit channel 𝛼, the partial cross section for that channel 𝜎(𝐸𝜈, 𝛼) is given by

𝜎(𝐸𝜈, 𝛼) = 𝜎(𝐸𝜈) ∑
𝐿

𝑃(𝐿)𝑃(𝛼 ∣ 𝐿) (7.1)

where 𝜎(𝐸𝜈) is the CC total cross section for 𝜈𝑒, 𝑃(𝐿) is the probability that the CC

reaction will proceed via a transition to the 𝐿th excited level of 40K (see eq. (6.4)), and

𝑃(𝛼 ∣ 𝐿) is the probability that the 𝐿th excited level will de-excite into a final state

corresponding to channel 𝛼. The quantities 𝜎(𝐸𝜈) and 𝑃(𝐿) may be easily calculated

using the cross section formulae derived in this thesis. The channel probability 𝑃(𝛼 ∣ 𝐿),

on the other hand, may be estimated using a large sample of Monte Carlo events in which

a decay of level 𝐿 is simulated.

Figure 7.2 shows the MARLEY 𝜈𝑒 CC total cross section (computed using dataset

B) together with the corresponding partial cross sections for several exclusive channels

obtained using the expression in eq. (7.1). All of these channels are defined to include 𝑋
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Figure 7.1: MARLEY 40Ar(𝜈𝑒, 𝑒−)40K total cross section compared to other
calculations. Datasets A and B give similar results for the total cross section. The
compilation of non-MARLEY cross sections shown here was originally presented in
reference [415] and obtained via private communication with the author. GTBD:

Unpublished calculation by A. Samana et al. that used a macroscopic neutrino cross
section model based on the Gross Theory of Beta Decay. Reference [255] describes the

model and presents some energy-averaged cross sections. RQRPA: Relativistic
Quasiparticle Random Phase Approximation calculation by N. Paar et al.

Energy-averaged cross sections obtained using this approach were published in reference
[281]. SM+RPA: A “hybrid model’’ calculation by T. Suzuki and M. Honma [282].
Partial cross sections for 0+ and 1+ multipole transitions (which correspond to Fermi
and Gamow-Teller transitions, respectively, in the low momentum transfer limit) were

obtained using the nuclear shell model, while those for other multipoles were computed
using the Random Phase Approximation. RPA: Random Phase Approximation
calculation by Martinez-Pinedo et al. [409]. PQRPA: Unpublished Projected

Quasiparticle Random Phase Approximation calculation performed by A. Samana et al.
using the QRAP computer code [245]. QRPA: Quasiparticle Random Phase

Approximation calculation by M. Cheoun et al. [412]. The dashed portion of the curve
shows an extrapolation (based on a sixth degree polynomial fit) of this cross section

beyond the maximum energy of 80 MeV tabulated by A. Samana.



𝛾-rays in the final state, where 𝑋 ≥ 0. Although similar calculations have been performed

for other nuclides (e.g., 16O [294]), to the present author’s knowledge, the results shown

here represent the first calculation of these exclusive cross sections for charged current 𝜈𝑒

scattering on argon in this energy range.

Despite the agreement seen up to 100 MeV between MARLEY and other calculations

of the 40Ar(𝜈𝑒, 𝑒−)40K total cross section, invoking the allowed approximation to calculate

the exclusive cross sections at high energies is problematic. As discussed above in sec-

tion 7.2, as the neutrino energy increases, forbidden transitions governed by 𝐽 > 0 terms

in the multipole expansion of the nuclear current (see section 3.8) become increasingly

important. Just as the majority of the Gamow-Teller strength in 40K is concentrated

in an excitation energy region near 12 MeV (the Gamow-Teller giant resonance, see sec-

tion 5.1.2), there are corresponding giant resonances for the forbidden multipole operators.

As the multipole order 𝐽 grows, the centroid energy of the associated giant resonance also

grows, roughly like (𝐽 + 1)ℏ𝜔, where ℏ𝜔 ≈ 41𝐴−1/3 MeV is a typical nuclear energy

shell splitting [198]. Thus, for neutrino scattering in the energy region where forbidden

transitions start to become important (above 50 MeV or so), considering only Fermi and

Gamow-Teller transitions will cause one to underestimate the average energy transfer to

the nucleus. This in turn will lead to an underestimate of the average numbers of emit-

ted nucleons and heavy fragments. Based on this reasoning, the cross sections shown in

fig. 7.2 are only plotted for neutrino energies up to 50 MeV.

7.4 Neutrino energy reconstruction

Beyond its usefulness as a tool to calculate 𝜈𝑒 CC cross sections for 40Ar, MARLEY’s

status as a full-fledged event generator enables a variety of detailed simulation studies to

be performed. Because the success of DUNE as a supernova neutrino detector will largely

depend on its ability to reconstruct the incident neutrino energies, simulations that assess

the degree to which the physics of low-energy neutrino-argon scattering imposes intrinsic

limitations on the energy reconstruction will provide a useful input for future analyses

and help the collaboration to evaluate the adequacy of the detector design for supernova
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physics.

Figure 7.3 shows the results from two examples of such simulations. In the top panel,

the black histogram shows the true neutrino energy spectrum obtained from a sample of

106 MARLEY events generated using the time-integrated 𝜈𝑒 flux predicted by the Liver-

more supernova model [419]. The red histogram shows the corresponding reconstructed

energy spectrum obtained using only the electron kinetic energy 𝑇𝑒 and the difference

𝑚g.s.→g.s. (see eq. (2.14)) between the ground-state atomic masses of 40Ar and 40K:

𝐸𝜈,reco = 𝑇𝑒 + 𝑚g.s.→g.s. (7.2)

As was discussed in section 2.3, this expression for the reconstructed neutrino energy,

which ignores the excitation energy of the final-state 40K∗ nucleus, is akin to that used

to reconstruct inverse beta decay events in water Cherenkov and hydrocarbon scintillator

neutrino detectors. While perfectly adequate when used in that context, the application

of this expression to CC 𝜈𝑒 absorption in a LArTPC introduces a clear bias in the re-

constructed energy distribution, shifting the peak about 8 MeV downward relative to the

true value and somewhat distorting the shape.

The blue histogram in the top panel of fig. 7.3 gives the reconstructed energy distri-

bution under the very optimistic assumption that the kinetic energies of the 𝛾-rays and

all charged particles produced in each event are perfectly reconstructed:

𝐸𝜈,reco = 𝑚g.s.→g.s. + ∑
𝑝

𝑇𝑝 (7.3)

Here 𝑇𝑝 is the kinetic energy of the 𝑝th neutrino reaction product, and the sum runs over

all particle types except for neutrons. While the agreement with the true distribution is

much better in this case, the reconstructed spectrum remains mildly distorted due to the

missing kinetic energy of the neutrons and the missing binding energy required to emit

each nuclear fragment. While each of these kinds of missing energy could in principle be

at least partially recovered (neutron kinetic energies by measuring the energies of 𝛾-rays

produced in inelastic scattering, binding energies by tagging and identifying the emitted

fragments), doing so in practice is likely to be very difficult. Since some of the kinetic

energy imparted to charged particles and 𝛾-rays is likely to be poorly reconstructed in
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a LArTPC (e.g., Compton-scattered electrons below the detection threshold), the blue

histogram may be interpreted as an estimated upper limit for the accuracy of the energy

reconstruction that might be achieved for these events. Assuming that the energy of the

primary electron may be precisely measured (which may not be true for the lowest-energy

electrons), the red histogram likewise serves as an estimate of the lower limit.

In the bottom panel of fig. 7.3, histograms with identical definitions are shown, but

the simulation was performed using the spectrum for 𝜈𝑒 produced by muon decays at rest,

which is much harder than the spectrum for the Livermore supernova model and may be

described by the normalized distribution [420]

𝜙(𝐸𝜈𝑒
) = 96 𝐸2

𝜈𝑒
𝑚−4

𝜇 (𝑚𝜇 − 2𝐸𝜈𝑒
). (7.4)

As the mean energy of the incident neutrinos increases, MARLEY predicts that a larger

fraction of events will involve the emission of nucleons and heavier nuclear fragments (see

table 7.1). The larger amount of missing binding energy (and neutron kinetic energy)

in the muon decay at rest events leads to greater distortions in the reconstructed energy

spectra relative to the spectra calculated for the Livermore supernova model. Future

measurements of low-energy 𝜈𝑒 CC cross sections using a LArTPC at a stopped pion

source,9 such as that proposed by the CAPTAIN experiment [422], will, according to

MARLEY, have to contend with the energy reconstruction difficulties afforded by nuclear

fragment emission in nearly 40% of their signal events.

7.5 Truth-level studies in LArSoft

When incorporated into a full detector simulation chain, MARLEY is able to provide

additional insights about the experimental techniques needed to reconstruct supernova

neutrino events in a LArTPC. In an effort to make the generator readily usable by the

experimental community, an interface has been created between MARLEY and the LAr-

Soft10 simulation and data analysis framework for LArTPCs. Starting with LArSoft
9The decay 𝜋+ → 𝜇+ + 𝜈𝜇 produces a monoenergetic 4.12 MeV 𝜇+ if the initial 𝜋+ is at rest. The

range of the 𝜇+ in typical target materials is very small (e.g., about 1 mm in scintillator), so it will also
stop and decay at rest. The dominant decay mode 𝜇+ → 𝑒+ + 𝜈𝑒 + ̄𝜈𝜇 yields an electron neutrino in the
tens-of-MeV energy range of interest for supernovae [421].

10See section 2.5 for a description of LArSoft.
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Figure 7.3: TOP: Truth-level energy reconstruction study performed using MARLEY
for simulated events generated according to the time-integrated 𝜈𝑒 spectrum predicted
by the Livermore supernova model [419]. The definitions of the three histograms shown
in the plot are described at length in the text. BOTTOM: A similar MARLEY study

performed using the 𝜈𝑒 spectrum for muon decays at rest.



Branching ratio % for

Livermore supernova model

Branching ratio % for

𝜇 decay at restDe-excitation products

gammas only 82.3 60.7

single neutron emission 12.7 25.6

single proton emission 3.3 8.3

other 1.7 5.3

Table 7.1: Branching ratios to final states from the MARLEY simulations shown in
fig. 7.3. The “single neutron emission’’ and “single proton emission’’ channels include
cases where a single nucleon emission is followed by a gamma cascade. The channel
labeled “other’’ includes both multi-step nucleon emissions (e.g., the emission of a

neutron followed by the emission of a proton) and the emission of deuterons, alphas, etc.

version 6.03.00, MARLEY has been distributed with every new release of LArSoft, and it

has seen widespread use within the DUNE collaboration for supernova neutrino sensitivity

studies.

While LArSoft is capable of performing full detector response simulations and realistic

event reconstruction, in this section we will briefly consider only a few truth-level results

from a sample of 8 × 104 MARLEY events. These were simulated within the geometry

provided by LArSoft for one of the 10 kt single-phase LArTPC modules planned for the

DUNE far detector. Figure 7.4 shows illustrations of the true trajectories for the final-

state particles produced in representative MARLEY events for the three dominant exit

channels: an event involving only a de-excitation 𝛾-ray cascade in addition to the recoiling

nucleus and primary electron (top left), an event involving single neutron emission (top

right), and an event involving single proton emission (bottom).

In the event shown in the top left of fig. 7.4, five de-excitation 𝛾-rays scatter many

times, creating small electron tracks in the LArTPC. While some of these will fall below

the energy threshold for detection, others will lead to one or a few wire hits that can

be used to identify the 𝛾-ray cascade and potentially measure its total energy. One may

characterize the size of the supernova neutrino events (and thus study their containment)

by defining a “visible energy sphere’’ centered on the neutrino vertex. The radius of this
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sphere is defined to be the minimum needed to fully contain all of the energy deposited

in the event. For the MARLEY event shown in the top left of fig. 7.4, the visible energy

sphere radius is 48.4 cm. In fig. 7.5, the blue histogram shows the distribution of visible

energy sphere radii observed for all MARLEY events that did not include a primary

neutron. For such events, the mean radius of the visible energy sphere is about 60 cm.

The example single neutron emission event, shown in the upper right plot of fig. 7.4, in-

cludes only three primary particles: an electron, a neutron, and the recoiling 39K nucleus.

Although MARLEY predicts that neutrons produced by charged current 𝜈𝑒 scattering on
40Ar will often be accompanied by one or more de-excitation 𝛾-rays, in this case, all of

the 𝛾-rays produced in the event originated either via inelastic scattering of the primary

neutron or via its capture on an 40Ar nucleus far from the neutrino vertex. Although the

large size of the DUNE LArTPC modules will aid neutron containment (nearly all of the

simulated primary neutrons were eventually captured within the detector in this study),

the distance of nearly 1.5 m seen in this event between the neutrino and neutron capture

vertices is typical (see fig. 7.6). Even if the neutrons originating from supernova neutrino

interactions can be successfully tagged in liquid argon, associating them with the correct

neutrino vertex may be challenging.

Unlike neutrons, protons emitted in supernova neutrino events will generate ionization

tracks in a LArTPC and will therefore directly contribute to the visible energy observed in

each event. However, because ∼10 MeV protons have a short range in liquid argon, these

tracks will be no larger than a few mm and potentially hard to distinguish from the start

of the primary electron track (see the illustration at the bottom of fig. 7.4). Although

MARLEY predicts that supernova 𝜈𝑒 will generate final-state protons less frequently than

neutrons (due to the Coulomb barrier experienced by the former), since each emitted

proton is accompanied by the invisible loss of roughly 8 MeV of binding energy, it may

still be useful for future experimental efforts to develop a means of tagging them in a

LArTPC.
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Figure 7.4: Displays of the true trajectories of the outgoing particles for representative
MARLEY events simulated using LArSoft. The particles were tracked through the

simulated geometry of one of the proposed 10 kt single-phase LArTPC modules for the
DUNE far detector. Event vertices were sampled uniformly throughout the active TPC
volumes within the simulated detector. TOP LEFT: A 40Ar(𝜈𝑒, 𝑒− 5𝛾)40K event induced

by a 16.1 MeV neutrino. TOP RIGHT: A 40Ar(𝜈𝑒, 𝑒− 𝑛)39K event induced by a
16.3 MeV neutrino. The secondary 𝛾-rays emitted close to the vertex were produced via
inelastic scatters of the primary neutron. Those emitted far away were produced when

the primary neutron was captured on an 40Ar nucleus. BOTTOM: A
40Ar(𝜈𝑒, 𝑒− 𝑝 𝛾)39Ar event induced by a 17.8 MeV neutrino.
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Figure 7.5: Stacked plot showing the separate contributions of MARLEY events
involving at least one primary neutron (red) and zero primary neutrons (blue) to the
total distribution of “visible energy sphere’’ radii observed in the LArSoft simulations

discussed in this section.

7.6 Future prospects for MARLEY

Although the MARLEY physics models and event generator implementation described in

this thesis represent a reasonable starting point for simulation-based investigations into

the sensitivity of future LArTPCs to low-energy neutrinos, including supernova neutrinos,

there remain a number of clear avenues through which the present treatment may be ex-

panded and improved. First, incorporating a cross section calculation into the MARLEY

generator which takes forbidden transitions into account will allow more theoretically rig-

orous predictions to be made for the event signatures produced by high-energy (∼50 MeV

and above) supernova neutrinos. While a full event-by-event calculation of the nuclear

matrix elements may be computationally infeasible in the generator itself, an alternative

approach would require precomputed tables of matrix elements evaluated as a function of

the final-state nuclear excitation energy and of the magnitude of the 3-momentum trans-
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Figure 7.6: Distribution of neutron capture distances (defined as the distance between
the neutrino vertex and the neutron capture vertex) observed in the LArSoft simulations

described in this section.

fer. Numerical interpolation methods could then be used to obtain an approximate value

for the matrix elements when computing cross sections.

Second, adding the capability to simulate channels other than the dominant CC 𝜈𝑒

reaction will enable MARLEY to provide a more complete picture of low-energy neutrino

scattering. While the current structure of the generator code could easily allow for such

an enhancement, adding channels other than neutrino-electron scattering (for which the

cross section is well known) will not be trivial. Unlike the CC 𝜈𝑒 reaction, there are

currently no available experimental data which could be used to determine the Gamow-

Teller matrix elements for CC ̄𝜈𝑒 reactions on 40Ar, and only a single measured transition

[423] which could be used for the NC reactions.11 In the absence of such data, which

could potentially be obtained (see section 5.3) via a charge exchange (CC ̄𝜈𝑒) or an
11A second measurement of interest for determining the neutral Gamow-Teller matrix elements for

40Ar was recently discussed in a talk at the APS Division of Nuclear Physics Fall Meeting [424], but the
results have not yet been published.
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inelastic proton (NC) scattering experiment at a suitable intermediate-energy nuclear

beam facility,12 one could attempt to provide a set of purely theoretical Gamow-Teller

matrix elements for MARLEY. This could be done by combining shell model calculations

at low excitation energies (which should reproduce the expected fragmentation of the

GT strength better than competing models) with an RPA-like model (e.g., the QRPA)

calculation at high excitation energies (where using the shell model becomes impractical).

Third, although the creation of the MARLEY generator was motivated by the desire

to understand supernova neutrino events in liquid argon, the code could be applied to the

simulation of low-energy neutrino scattering on other nuclear targets with little needed

modification. Because the nuclear de-excitation simulation used in MARLEY relies on

tabulated structure data and nuclear model parameterizations that are intended to work

for essentially all nuclei, simply providing new tabulated level energies and 𝛾-ray branching

ratios should be sufficient to simulate de-excitations of any target nucleus likely to be of

interest.13 The main obstacle to extending the MARLEY generator to handle other

nuclear targets is the need to prepare an input table of reaction matrix elements for

each nuclide individually. Since the cross sections for low-energy neutrino scattering

are sensitive to the details of nuclear structure, this requirement is unavoidable but not

insurmountable if there is sufficient interest in a particular nucleus.

Finally, future experimental measurements using low-energy neutrinos will provide

invaluable constraints on the MARLEY physics models. Barring the actual observation

of supernova neutrinos in a currently operating LArTPC, the most convenient means

of making a direct test of the generator’s predictions will be to measure neutrino-argon

cross sections by exposing a LArTPC14 to 𝜈𝑒 produced at a stopped pion source. Such

an experiment could be carried out at an existing neutron spallation or neutrino beam

facility, with possible sites in the United States including the Spallation Neutron Source at
12Examples include iThemba LABS in South Africa and the Research Center for Nuclear Physics

(RCNP) in Japan.
13The one major exception is that, for very heavy nuclei, the possibility of neutrino-induced fission

[425] may become important. To properly study low-energy neutrino scattering on a 208Pb target, for
instance, this channel would probably need to be added to MARLEY’s compound nucleus model.

14Or, perhaps, another kind of liquid-argon-based detector. An alternative design optimized for low-
energy neutrino-argon cross section measurements is proposed in reference [426].
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Oak Ridge National Laboratory and an off-axis location at the NuMI or Booster Neutrino

beamlines at Fermilab [422, 427]. Current efforts by the COHERENT collaboration to

obtain an improved measurement of the CC 𝜈𝑒 cross section on 127I and to measure the

cross sections for neutrino-induced neutron production on lead, iron, and copper [428] will

also provide much-needed data in MARLEY’s energy range of interest. However, in order

to properly interpret these data in a way that can lead to improvements in future versions

of the generator, the creation of new MARLEY reaction matrix element datasets, similar

to those presented for 40Ar in chapter 5, will likely be required.
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Chapter 8

Neutron background characterization in

ANNIE Phase I

To help ensure the success of its proposed neutron yield measurement, the ANNIE col-

laboration must carefully consider potential sources of background events, including true

neutron captures that do not originate from a neutrino interaction vertex inside the water

volume. While one may greatly reduce backgrounds due to natural radioactivity (e.g.,

neutrons produced by cosmic rays, neutrons from uranium fissions in concrete) by re-

quiring neutron capture candidate events to occur in a small time window shortly after

the arrival of each beam spill, timing cuts of this kind will not allow one to eliminate

background neutrons that are correlated in time with the beam itself. Because these

beam-correlated backgrounds are difficult to accurately predict and potentially disastrous

for the experiment if they are too large, a direct characterization of them is needed to

maintain the integrity of the planned Phase II measurements. This chapter describes

the neutrino beam used for the ANNIE experiment (see fig. 8.6 for a pictorial overview of

beam production) and examines possible sources of beam-correlated neutron backgrounds

in the ANNIE detector. It then describes the goals and design of ANNIE Phase I, an

experiment to measure those backgrounds that is the subject of the remainder of this

thesis.
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8.1 The Fermilab Booster Neutrino Beam

The Booster accelerator is a 74.5 m radius proton synchrotron located at Fermi National

Accelerator Laboratory in Batavia, Illinois. Protons are injected into the Booster at

400 MeV kinetic energy from an upstream linear accelerator system, and they are ex-

tracted at 8 GeV kinetic energy into the MI-81 transfer line, where they may be sent to

a beam dump, the Main Injector synchrotron, the Recycler ring, or the beamline for the

Booster Neutrino Beam (BNB) [429, 430]. Figure 8.1 shows a schematic of the proton

accelerators in operation at Fermilab at the time of this writing.

To produce neutrinos for the BNB, protons extracted from the Booster accelerator

are directed at a 71 cm thick, 1 cm diameter cylindrical target (see fig. 8.2) consisting

of seven slugs of beryllium encased in a beryllium sleeve. Beryllium was chosen as the

material for the primary target elements because of its high pion production yield, its

ability to withstand a large number of beam spills before failing, the relative ease with

which it may be cooled, and the desire to minimize the radiological hazards associated

with exposing the target to 1021 protons or more over its lifetime [431]. Protons are sent

to the target from the Booster in a 1.6 μs spill that consists of a series of 81 bunches, each

lasting about 2 ns and arriving in 19 ns intervals. A single beam spill delivers a total of

roughly 5 × 1012 protons to the target. The spills repeat at an average rate of 5 Hz under

normal operating conditions [84].

Protons interacting in the target produce a secondary beam of short-lived mesons,

particularly pions. Charged particles emerging from the target are focused by by a device

called a horn. First invented by Simon van der Meer in 1961 [432], a horn uses a large

pulsed current (174 kA [431] for the BNB horn) to generate a toroidal magnetic field that

focuses charged particles of one sign while defocusing those of the opposite sign. The sign

to be focused can be changed by reversing the direction of the horn current. When the

BNB is running in neutrino mode, positive particles are focused, while negative particles

are focused when running in antineutrino mode. A photograph of a horn used in the BNB

is shown in fig. 8.3.
1Main Injector 8-GeV
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After being focused by the horn, charged particles from the beam are allowed to drift

down a 50 m decay pipe. The majority of the pions (almost entirely of the sign selected

by the horn) in the pipe will undergo the decays

𝜋+ → 𝜇+ + 𝜈𝜇 𝜋− → 𝜇− + ̄𝜈𝜇 (8.1)

to produce muon-flavor neutrinos or antineutrinos. While these neutrinos are the primary

component of the final beam, some muons will also decay in the pipe via

𝜇+ → 𝑒+ + ̄𝜈𝜇 + 𝜈𝑒 𝜇− → 𝑒− + 𝜈𝜇 + ̄𝜈𝑒, (8.2)

creating some contamination of the beam from electron flavor neutrinos and muon flavor

neutrinos of the wrong species (for example, ̄𝜈𝜇 in a beam composed of mainly 𝜈𝜇).

Hadrons other than pions may also contribute to neutrino production in the beam, e.g.,

via the charged kaon decays

𝐾+ → 𝜇+ + 𝜈𝜇 𝐾− → 𝜇− + ̄𝜈𝜇. (8.3)

At the far end of the decay pipe, a thick barrier constructed using steel and concrete

is used to absorb essentially all of the remaining hadrons. A second retractable absorber

is placed halfway down the decay pipe (at 25 m), allowing users to reduce the available

decay time for hadrons in the beam [84]. While useful for studying systematic effects in

the neutrino beam flux, the retractable absorber is typically left outside of the decay pipe

during normal operation. Because the BNB target is located about 7 m underground,

[433] muons that penetrate the final barrier eventually stop in the unexcavated rock

downstream from the target hall while the beam neutrinos pass through it unimpeded.

Readers interested in more detailed information about the production of the Booster

Neutrino Beam are encouraged to consult references [429–431, 434–436].

The Booster Neutrino Beam is the primary source of neutrinos for three currently

operating experiments: ANNIE, MicroBooNE, and MiniBooNE. In the near future, two

additional detectors, ICARUS-T600 and SBND, will begin taking data in the BNB beam-

line as part of the proposed Short-Baseline Neutrino Program [84]. Figure 8.5 depicts the
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Figure 8.1: Diagram of the currently-operating proton accelerator beamlines at
Fermilab. The line labeled “Low-Energy Neutrino Experiments’’ is used to produce

neutrinos for the Booster Neutrino Beam. Figure taken from http://www.fnal.gov/
pub/science/particle-accelerators/accelerator-complex.html.

http://www.fnal.gov/pub/science/particle-accelerators/accelerator-complex.html
http://www.fnal.gov/pub/science/particle-accelerators/accelerator-complex.html


Figure 8.2: Exploded view of the Booster Neutrino Beam target components. Figure
taken from reference [436].

Figure 8.3: A magnetic horn used to produce the Booster Neutrino Beam. Figure taken
from https://web.fnal.gov/project/TargetSystems/BNB_target_hall/SitePages/

BNB%20Horn.aspx.

https://web.fnal.gov/project/TargetSystems/BNB_target_hall/SitePages/BNB%20Horn.aspx
https://web.fnal.gov/project/TargetSystems/BNB_target_hall/SitePages/BNB%20Horn.aspx


Figure 8.4: Predicted neutrino flux (total and for individual neutrino species) from the
Booster Neutrino Beam (running in neutrino mode) at SciBooNE hall, the location of

the ANNIE detector. The spectra shown here represent averages within a 2.12 m radius
of the beam center. They are normalized per unit area, per unit energy, and per proton

on target (POT). Figure taken from reference [437].

expected site layout for the experiments that will be using the BNB over the next few

years.

The ANNIE detector is the first BNB experiment to receive neutrinos from each beam

spill, being located in SciBooNE hall only 100 m away from the BNB target. A calculation

of the expected neutrino flux in SciBooNE hall when the Booster Neutrino Beam is

running normally in neutrino mode (positive horn polarity) is shown in fig. 8.4. The total

estimated neutrino flux of 2.2 × 10−8 cm−2 per proton on target is dominated by muon

neutrinos (93%), with a modest number of muon antineutrinos present (6.4%) and a small

amount of contamination from electron neutrinos and antineutrinos (0.6% total) [437].
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Figure 8.5: Map showing the detectors along the path of the Booster Neutrino Beam,
including the planned sites of the far detector (ICARUS-T600) and near detector
(SBND) for the Short-Baseline Neutrino Program at Fermilab. Although the near
detectors for the MINOS and NOvA experiments are also relatively close to the

production site of the BNB, their primary source of neutrinos is the Fermilab NuMI
(Neutrinos at the Main Injector) beam. Figure taken from reference [84] and updated to

include the ANNIE detector (shown near the bottom right of the drawing), which
occupies an experimental hall previously used by the SciBooNE experiment [196].

8.2 Beam monitoring

Many diagnostic instruments are used at all stages of producing the BNB to achieve and

maintain the highest possible intensity, provide useful information for beam simulations,

alert operators to problems, and ensure safety. For the ANNIE experiment, two beam

monitoring systems are particularly important: the resistive wall current monitor (RWM)

and the beam current toroids.

8.2.1 Resistive wall current monitor

A resistive wall current monitor upstream of the BNB target is used to record the arrival

of each beam spill. The device consists of a set of resistors connected across a gap in the

wall of the beam pipe (see figs. 8.7 and 8.8). The gap is sealed with a ceramic insulator to

prevent foreign objects from entering the beam pipe and to force induced currents to flow

across the resistors. As protons from the beam pass through the beam pipe, they induce

a current of negative image charges on the pipe’s conducting inner surface (see fig. 8.9).
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Figure 8.6: Summary of the procedure used to produce neutrinos for the Fermilab
Booster Neutrino Beam. Figure taken from

http://targets.fnal.gov/BNB_neutrino_beam.html.

This image current is proportional to the beam intensity. One may therefore obtain a

measurement of the longitudinal profile of the beam by measuring the image current

flowing through the resistors that bridge the gap in the beam pipe wall [430]. Signals

from the RWM measuring the proton beam arriving at the BNB target are recorded by

the ANNIE data acquisition system when taking beam data.

8.2.2 Beam current toroids

The beam current toroids provide a way to measure the number of protons arriving at

the target in each beam spill. Each toroid consists of a ferrite ring positioned so that

the beam travels perpendicularly through its center (see fig. 8.10). The moving protons

in the beam create a circular magnetic field concentric with the beam that enters the

ferrite ring and is amplified by it. Because the protons from the beam are grouped into

discrete bunches, the amplitude of the magnetic field changes as each bunch approaches
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Figure 8.7: Photograph of the resistive wall current monitor used to measure the proton
beam arriving at the BNB target. The outer cover has been removed to expose the gap

and the RWM electronics. Figure taken from reference [438].

and leaves the toroid. This changing magnetic field induces an electrical current in a

pickup loop wrapped around part of the ferrite ring. By measuring the voltage across a

resistor connected to the pickup loop, one may use Ohm’s law to obtain the current in

the pickup loop. Faraday’s law of induction may then be used to obtain a measurement

of the beam current [430].

Two beam current toroids are used to monitor the BNB. Toroid 875 is located 5 m

upstream of the target, while Toroid 860 is placed 150 m further upstream [439]. Both

toroids are continuously calibrated at 5 Hz and typically agree with each other to within

2%. Semiannual verifications of their absolute calibrations have shown them to be stable

(deviations are less than 0.5%) [436].
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Figure 8.8: Basic design of a resistive wall current monitor (RWM). Resistors are
connected across a ceramic gap in the beam pipe wall, and the current flowing through

them is measured. Figure taken from reference [430].

8.3 Beam-associated neutron backgrounds

Several kinds of neutron backgrounds are expected to exist in the ANNIE detector. Neu-

trons that are the result of natural radioactivity will form a constant-in-time background

that can be measured using an off-beam trigger and greatly reduced by vetoing events

outside of a small time window after the arrival of the beam. Two more worrisome kinds

of neutron backgrounds, illustrated in fig. 8.11, are not mitigated by such timing cuts

because they are correlated in time with the beam.
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Figure 8.9: As protons from the beam pass through the beam pipe, they induce a
negatively-charged image current on the wall of the pipe. Figure taken from reference

[430].

Figure 8.10: Conceptual design of a beam current toroid. The proton beam is directed
perpendicularly into the page. Figure taken from [430].



Figure 8.11: Beam-induced neutron backgrounds in the ANNIE detector. “Skyshine
neutrons’’ originate from hadron interactions in the beam target and absorber, while

“dirt neutrons’’ originate from neutrino interactions in the dirt and rock upstream of the
ANNIE detector. Figure by Vincent Fischer.

8.3.1 Dirt neutrons

The first of these beam-associated backgrounds consists of dirt neutrons, that is, neutrons

produced by neutrino interactions with the dirt and rock upstream of the ANNIE detector,

which is positioned several meters underground in line with the beam axis. Because the

signal neutrons produced by neutrino interactions in the tank will typically take tens of

μs to be detected via capture on Gd nuclei, even dirt neutrons that arrive fairly late

with respect to the beam may nevertheless pose a problem for an accurate neutron yield

measurement.

To predict the size of the background produced by dirt neutrons, ANNIE collaborators

Erika Cataño Mur, Robert Hatcher, and Mayly Sanchez produced simulations of neutrinos

from the BNB passing through SciBooNE hall, the ANNIE detector, and the surrounding

area using the GENIE neutrino event generator [174] and the Geant4 particle transport

code [440]. A sample of simulated events corresponding to about 3.05 × 1020 protons on
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target2 (POT) was included in the study. Although the simulations used a preliminary

geometry for the ANNIE water tank that had a smaller diameter than the final design

(9 ft in the simulation vs. 10 ft as built), they nevertheless provide a useful rough estimate

for the expected rates of dirt and signal neutrons entering the ANNIE detector.

The simulated neutrino interaction vertices and points where neutrons entered the

water tank are shown in fig. 8.12. Though about 28% of the simulated dirt neutrons enter

the tank within the first 24 ns after the arrival of the beam (with 78.5% entering within

the first 70 μs), the right panel of fig. 8.13 shows that some dirt neutrons will continue

to trickle in for up to tens of ms. As expected, cuts requiring signal events to occur

shortly after the arrival of the beam will be ineffective at eliminating the dirt neutron

background. Figure 8.14 shows the predicted energies for both signal and dirt neutrons,

which have similar distributions.

For a nominal beam spill intensity of 5 × 1012 POT, the simulations showed that

about 1% of spills will create a dirt neutron that enters the ANNIE tank, while about

0.8% of spills will create a signal neutron. To a good approximation, these two processes

may be treated as independent, since the interaction of one or even a few beam neutrinos

upstream of the ANNIE detector will not appreciably change the probability that a neu-

trino interaction will occur in the tank during the same spill. Therefore, one may estimate

based on these simulations that roughly 1% of all neutrino events will be contaminated

by a dirt neutron entering the water volume.

This result suggests that dirt neutrons will be only a minor nuisance in ANNIE Phase

II. However, because significant uncertainties exist in the models used to create the dirt

neutron simulations (including the nuclear models governing neutrino-induced neutron

emission, which ANNIE Phase II intends to measure), obtaining an experimental con-

straint for this background would still be prudent.

8.3.2 Skyshine neutrons

The second type of beam-induced neutron background that may be observed in the ANNIE

detector is due to skyshine neutrons. These neutrons, produced via hadronic interactions
2For a year of operating the BNB, the nominal number of protons on target is 2 × 1020.
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Figure 8.12: Simulated spatial distributions of neutrino vertices outside the tank that
produce neutrons that reach the tank (black points), neutrino vertices inside the tank

(cyan points), and points where neutrons enter the tank (magenta). Figure from
reference [126].

in the target or beam aborber, initially leak out of the target hall into the air and then

scatter downward toward the detector (see fig. 8.11).

Skyshine neutrons from high-energy accelerators have been recognized3 as a potential

radiological hazard since the 1950s [443, 444] and as a troublesome background for neu-

trino experiments for at least forty years [445]. Figure 8.15 illustrates an observation of

skyshine in the SciBar plastic scintillator detector during its use in the K2K long-baseline

neutrino oscillation experiment. The plot shows the time distribution of hits on a single

scintillator strip at the top of the detector. Individual beam bunches can be observed

as the narrow peaks on the left side of the plot. The peaks lie on top of an increasing

baseline attributed to skyshine neutrons.
3For reviews of the early literature on skyshine, see references [441, 442].
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Figure 8.13: Simulated arrival times for neutrino-induced neutrons entering the water
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the detector.
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Figure 8.15: Single-strip hit time distribution at the top of the SciBar plastic scintillator
detector for a measurement at KEK. The beam bunch peaks sit on top of an increasing

pedestal attributable to skyshine neutrons. Figure from reference [196].

Preliminary studies performed by the SciBooNE collaboration at the BNB also re-

vealed noticeable skyshine event rates (see fig. 8.16) [196, 446]. Because it will be difficult

to predict the expected skyshine neutron flux as a function of position within the ANNIE

detector, an experimental measurement of this background is needed.

8.4 Phase I detector description

The goal of Phase I of the ANNIE experiment is to determine whether the neutron back-

grounds at the BNB will be sufficiently low for the Phase II neutron yield measurement to

be feasible. The Phase I configuration of the ANNIE detector was designed to enable this

background characterization while requiring relatively minor upgrades for the subsequent

physics measurement. In fig. 8.17, concept drawings of the detector configuration for the

two phases of the experiment are compared. In the remainder of this section, each of the

major components of the Phase I detector are described.
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Figure 8.16: Reconstructed 𝑦 coordinates of event vertices in the SciBooNE detector
while running at the BNB. Events that occur in time with the beam have a nearly
uniform distribution of 𝑦 coordinates, while those that occur before and after have

distributions that are biased toward the top of the detector. This bias is attributable to
cosmic rays in the pre-beam timing region and to a combination of cosmic rays and
skyshine in the post-beam timing region. Figure adapted from reference [447], which

obtained the plots from reference [446].

8.4.1 Water tank

The target for the Phase II neutrino interaction measurements will consist of 26 tons of

water loaded with gadolinium sulfate (Gd2O12S3) at a concentration of 0.2% by weight,

which corresponds to a concentration of 0.1% of pure Gd by weight. In Phase I, 26 tons of

ultra-pure water were used without any gadolinium sulfate present. In the detector design

for both phases, the water volume is stored in an upright cylindrical steel tank that is 13 ft

tall and has a diameter of 10 ft. The inner surface of the tank is covered with a reflective

white PVC4 liner to maximize light collection and to prevent the leaching of transparency-

reducing materials into the water from the tank walls. In Phase I, the inner bottom surface

of the tank is instrumented with sixty Hamamatsu 8-inch R5912 photomultiplier tubes.

These are mounted on a stainless steel inner structure (see fig. 8.18) that was assembled
4Polyvinyl chloride
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Figure 8.17: Concept drawings of the detector configuration used for each phase of the
ANNIE experiment. In both drawings, the beam travels from left to right. LEFT: The

Phase I configuration of the ANNIE detector. For Phase I, the tank contains pure
water, and the bottom of the tank is instrumented with sixty PMTs. The Neutron

Capture Volume (NCV), a movable neutron-sensitive subvolume of the detector, is used
to measure position-dependent neutron backgrounds within the tank. RIGHT: The
Phase II configuration of the ANNIE detector. For Phase II, the tank is filled with

gadolinium-loaded water, all inner surfaces of the tank are instrumented with PMTs,
and LAPPDs (represented by thin gray rectangles in the drawing) are installed on the

far side of the tank from the beam. Figure from reference [126].

separately and then lowered by crane into the tank.

8.4.2 Neutron Capture Volume (NCV)

The main detector component that is unique to ANNIE Phase I is the Neutron Capture

Volume (NCV), a cast acrylic upright cylindrical vessel reinforced with a frame of stainless

steel (see fig. 8.19). The vessel consists of a 24 in long acrylic tube with an outer diameter

of 20 in and a 3/8 in thick wall. Both ends of the tube are sealed using 20 in acrylic squares

that are 1 in thick. The vessel is filled with EJ-335 liquid scintillator, a gadolinium-loaded

(0.25% Gd by weight) scintillator manufactured by Eljen Technology [448]. The top of

the vessel is instrumented with two photomultiplier tubes placed in waterproof housings.

The NCV PMTs are labeled as “#1’’ and “#2’’ in the chapters describing the neutron

background analysis, with #1 referring to the PMT that was installed first. A white

wrapper placed around the acrylic vessel maximizes the light collected by the two PMTs.

As shown in the right panel of fig. 8.20, the NCV and its two PMTs were enclosed in
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Figure 8.18: LEFT: The Phase I stainless steel inner structure being lowered into the
ANNIE water tank. UPPER RIGHT: The ANNIE water tank being installed in the

experimental hall. LOWER RIGHT: The 8-inch PMTs used to instrument the bottom
of the tank for Phase I. Figure from reference [126].

a black plastic bag to optically isolate them from the rest of the ANNIE tank. The

steel NCV frame was connected to a winch system installed in the ANNIE detector hall.

The winch allowed the NCV assembly to be moved to various positions within the water

volume and stably held in place during data taking.

8.4.3 Front veto

To veto muons produced by neutrino interactions in the dirt and rock upstream of the

ANNIE detector, 26 plastic scintillator paddles were mounted on the beam-side wall of

the ANNIE experimental hall just outside of the water tank. The paddles, each of which

has an active area of 10 ft 6 in by 1 ft 1/8 in and a thickness of 7/8 in, were mounted

in a single layer 13 paddles high and 2 paddles thick to form a barrier that completely

covers the water tank. Each paddle is instrumented with a light guide and a 2 inch PMT

on one side. The muon detection efficiency of the paddles is about 90% near the light

guide to about 50% near the far end. Figure 8.21 shows a concept drawing of the front
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Figure 8.19: CAD (Computer Assisted Design) drawing of the Neutron Capture Volume
from ANNIE Phase I. Figure by David Hemer.

veto and a photograph of it after installation.

While the front veto was fully operational during ANNIE Phase I, an alternative means

of vetoing cosmic muons using the tank PMTs was found to be sufficiently effective for

the neutron background measurements. The front veto will become much more important

in Phase II, since the signals of interest for the physics measurements will be detected by

PMTs and LAPPDs observing the water volume, and therefore an external muon veto

will be needed.

8.4.4 Muon Range Detector

During ANNIE Phase II, the direction and energy of muons produced by charged current

neutrino interactions inside the water volume will be measured using a device called

the Muon Range Detector (MRD). Originally built for the SciBooNE experiment (which

previously occupied the same experimental hall used by ANNIE), the MRD consists of a

“sandwich’’ of twelve 274 × 305 cm2 iron plates placed between thirteen layers of plastic

scintillator paddles, the latter being read out by a total of 362 two-inch PMTs. The

pattern of hit paddles combined with the depth at which a muon ranges out in the
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Figure 8.20: LEFT: The Neutron Capture Volume (NCV) from ANNIE Phase I before
its installation in the water tank. Two PMTs, encased in waterproof housings and

wrapped with black plastic, observe scintillation light induced by neutron captures in
the acrylic vessel, which is filled with Gd-loaded liquid-scintillator. The NCV frame is
attached to a winch system (partially shown near the top of the photograph), allowing
the NCV to be moved to different locations inside the tank. RIGHT: The NCV after
installation in the water tank. To optically isolate the NCV from the rest of the tank,

the acrylic vessel and two PMTs were wrapped with a black plastic bag.

MRD will be used for kinematical event reconstruction in ANNIE Phase II. Although not

needed for the background neutron event rate analysis, two layers of the MRD were fully

instrumented and operated for testing purposes during Phase I. The MRD has been fully

refurbished in preparation for Phase II data taking.

8.4.5 Cosmic ray trigger

To enable triggering of the ANNIE detector in response to cosmic muons traveling in a

known direction, six plastic scintillator paddles, each with an attached light guide and

PMT, were mounted in a metal frame as shown in fig. 8.23. The six PMT outputs

were connected to a NIM5 logic module that issued trigger signals to the ANNIE data

acquisition system in response to three distinct sets of coincident pulses from the PMTs.
5Nuclear Instrumentation Module
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Figure 8.21: LEFT: Concept drawing of the ANNIE front veto. RIGHT: A photograph
of the front veto after its installation in the experimental hall for ANNIE Phase I.

Figure 8.22: LEFT: Concept drawing of the SciBooNE Muon Range Detector, now
repurposed for ANNIE. RIGHT: A side view of the MRD as it appeared during Phase I

data taking.



Table 8.1: The three distinct combinations of coincident paddle hits that gave rise to
cosmic muon triggers in ANNIE Phase I. The three combinations were distinguished

during data taking by the width of the NIM logic pulse issued by the cosmic ray trigger.
Each combination is indicative of a different physical situation, as described in the

“Interpretation’’ column of the table.

Combination
number

Hit
paddlesa

Trigger logic
pulse width (ns) Interpretation

1 1,3,4,6 10 Downward muon toward NCV

2 2,3,5,6 20 Downward muon outside NCV

3 1,3,5,6 40 45° muon toward MRD
aSee the left panel of fig. 8.23 for the paddle numbering scheme.

Table 8.1 lists the combinations of paddle hits that gave rise to a NIM logic pulse in

ANNIE Phase I. The width of the logic pulse was used to indicate which of the three

combinations of interest was observed. Of particular importance to the Phase I analysis

was combination 1, which was consistent with downward muons passing through the

scintillator paddles toward the NCV. Data taken in response to cosmic triggers of this

kind were used to estimate the neutron detection efficiency of the NCV, as described in

section 10.2.

8.4.6 252Cf calibration trigger

In addition to the NCV calibration based on data taken with the cosmic muon trigger,

efficiency calibrations were also performed using a 252Cf fission neutron source. Because a

description of the triggering apparatus used in those measurements is most directly rele-

vant to the discussion of the NCV efficiency analysis, we will postpone giving a description

of this portion of the detector until section 10.1.1.

8.5 Phase I Data Acquisition

The data acquisition system (DAQ) for ANNIE Phase I uses two sets of readout electronics

in parallel. The first of these, a 500 MHz analog-to-digital converter (ADC) system
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Figure 8.23: ANNIE Phase I cosmic ray trigger. LEFT: Concept drawing showing the
paddle numbering scheme. As described in the text and in table 8.1, coincidences of

multiple paddles are used to select cosmic muons traveling in three different directions.
The yellow cylinder in the drawing represents the NCV. Drawing by Jingbo Wang.
RIGHT: Photograph of the installed cosmic ray trigger during Phase I data taking.

implemented using VME6 electronics, is used to digitize the PMT signals. The second, a

time-to-digital converter (TDC) system originally developed for the SciBooNE experiment

using CAMAC7 electronics, records signals from the front veto and MRD. Both sets of

readout electronics share a centralized triggering and timing system implemented using

a CAEN V1495 FPGA8 VME card running custom firmware. Triggers used by the DAQ

include those indicating the arrival of the beam (highest priority), coincidences of the

cosmic ray paddles (see section 8.4.5), and pulses on the PMT monitoring the 252Cf

calibration source (see section 10.1), among others. Timestamps recorded by the trigger

card and the ADC and CAMAC systems allow the data streams to be synchronized and

combined in the offline analysis. The DAQ computers use an ANNIE-specific version

of the ToolDAQ framework9 to configure, monitor, and receive data from the readout

electronics. Raw data files from the DAQ are saved to disk in ROOT format [449] and
6Versa Module Europa
7Computer-Aided Measurement and Control
8Field-programmable gate array
9http://github.com/ToolDAQ/ToolDAQFramework

220

http://github.com/ToolDAQ/ToolDAQFramework


analyzed offline using procedures described in chapter 9. More details about the Phase I

readout electronics and DAQ software are available in references [126, 450].

During early Phase I data taking, the ADC system was configured to respond to trigger

events by recording data from the PMTs continuously during an 80 μs time window. This

normal mode readout scheme operated in essentially the same way for all of the enabled

triggers, except that the portion of the window in which pre-trigger data were digitized

differed between trigger types. Part of the way through Phase I, however, the DAQ

software and firmware were upgraded to enable data taking using a zero suppression mode,

nicknamed “Hefty mode’’ in reference [126], which was used during all of the remaining

beam runs.

Zero suppression mode introduces a new multiplicity trigger for the ADC system,

which is issued in response to pulses above a user-defined ADC threshold on one or more

PMTs. The ADC multiplicity trigger is temporarily enabled during a configurable time

window following the receipt of a trigger of a different type, e.g., a beam trigger. During

ANNIE Phase I, the ADC multiplicity trigger was used as a self-trigger for the NCV: a

multiplicity trigger signal was issued whenever either of the two NCV PMTs recorded a

signal above 357 ADC counts10 within 100 μs of a preceding beam, cosmic ray, or 252Cf

calibration source trigger.

While running in zero suppression mode, the ADC system digitizes the PMT signals

during a 2 μs minibuffer following any enabled trigger, including NCV self-triggers. The

time when each minibuffer began is also recorded with ns precision. When 40 minibuffers

have been read out (so that the complete 80 μs buffer used to store a single event in

normal mode has been filled), the data must be transferred to the DAQ computers before

further minibuffers may be recorded. If additional triggers that would have resulted in

the creation of a new minibuffer are received during the dead time associated with the

data transfer, a boolean flag is set in the DAQ output that allows incomplete events to

be identified and excluded during the offline analysis.

To reconstruct a beam event taken in zero suppression mode, a minibuffer recorded
10This corresponds to a threshold of about 6 mV for NCV PMT #1 and about 8.6 mV for NCV PMT

#2.
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in response to a beam trigger is considered together with zero or more NCV self-trigger

minibuffers that followed. The start times of each of the self-trigger minibuffers relative

to the beam trigger are determined in a pre-processing step using timing information

recorded by the ADC system and trigger card. The start times for PMT pulses, which

are assigned by the ANNIE reconstruction software relative to the start of the minibuffer

in which they are found, are then corrected using the appropriate minibuffer offsets to

obtain event times relative to the beam.

8.6 Measurement strategy

During the planned Phase II physics measurements, photomultiplier tubes will be used

to count the number of neutron captures observed in tens of μs following charged current

neutrino interactions in the water tank. The goal of ANNIE Phase I is to determine

whether the rate of background neutron captures (in particular, those correlated in time

with the beam) during the same time period of interest will be sufficiently low for the

Phase II measurements to proceed. For definiteness, a time region of interest (ROI) from

10 μs to 70 μs after the beam begins to cross the ANNIE detector was chosen for Phase

I.

To study how the background neutron event rate varies with position inside the ANNIE

water tank, Phase I beam data were taken with the NCV placed at seven different posi-

tions, as shown in fig. 8.24, where the positions are numbered in chronological order. In

an attempt to separate the contributions of skyshine and dirt neutrons to the measured

background, the NCV was used to perform vertical (positions 1, 2, 4, 5, and 6) and hori-

zontal (position 2, 3, and 7) scans of the detector. Cosmic trigger data were recorded at

each position in addition to beam data. Table 8.2 lists the number of recorded cosmic

triggers and the total POT delivered by the beam with the NCV at each position.

Assuming that captures of neutrons above thermal energies (∼ 0.025 eV) and thermal

neutron captures outside of the NCV liquid may be neglected,11 the expected number of
11The estimated NCV energy threshold of 4.76 MeV determined in section 10.2.2, which is comfortably

above the energy of the 2.2 MeV 𝛾-ray emitted following thermal neutron capture on 1H, lends support
to the latter assumption.
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Figure 8.24: NCV position scan performed during beam data taking in ANNIE Phase I.
Each of the NCV positions, which are not drawn to scale, is numbered in chronological
order. The beam had been shut down for maintenance before any data were taken at

position #8. Despite the lack of beam, additional test runs were taken with the NCV at
position #8 before the Phase I detector was decommissioned. Position #8 is shown in

red in the figure to indicate that data taken there are not included in the analysis
described in this thesis.

neutron capture events observed in the NCV 𝑁𝑛 at a given position may be written as

𝑁𝑛 = 𝜙𝑛 𝒫 𝑉NCV 𝜖NCV ΣNCV (8.4)

where the exposure 𝒫 represents the total number of protons delivered to the Booster

Neutrino Beam target while data were being taken with the NCV at the position of

interest, 𝑉NCV is the volume of the NCV liquid, and 𝜖NCV is the detection efficiency of the

NCV for neutron captures. ΣNCV is the macroscopic neutron capture cross section of the

NCV liquid, defined by

ΣNCV = ∑
𝑗

𝑔𝑗 𝜎𝑗 𝜌𝑗 = 37.2(1) m−1 (8.5)
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Table 8.2: Summary of beam and cosmic data taken during Phase I. See fig. 8.24 for a
diagram of the NCV positions. An uncertainty of 2 cm was estimated for all NCV

position measurements.

NCV
position

Water
overburdena

(cm)

Water
shieldingb

(cm)

Beam
spills

Total exposure
(1018 POT)

Average POT
per spill

(1012 POT)

Cosmic
triggers

1 6(2) 104(2) 1 779 098 7.88 4.43 17 217

2 138(2) 104(2) 4 568 327 17.66 3.87 33 437

3 138(2) 10(2) 4 383 135 13.24 3.02 40 451

4 36(2) 104(2) 3 476 203 10.98 3.16 59 387

5 67(2) 104(2) 2 023 082 6.79 3.36 26 610

6 21(2) 104(2) 973 057 3.63 3.73 11 502

7 138(2) 58(2) 650 378 2.20 3.39 6575
aThe thickness of water above the NCV
bThe thickness of water between the beam-side wall of the tank and the NCV

where 𝜎𝑗 is the microsopic cross section12 for capture of 2.2 km/s neutrons on nuclide 𝑗,

𝑔𝑗 is the Westcott factor13 for nuclide 𝑗, 𝜌𝑗 is the atom density of nuclide 𝑗, and the sum

runs over all nuclides present in the NCV liquid scintillator. The numerical value given

in eq. (8.5) was calculated using the atom densities given in reference [448] and the cross

section data given in reference [451]. The symbol 𝜙𝑛 denotes the average fluence14 of

thermal neutrons per proton on target within the NCV liquid. That is, if Φ𝑛(𝐫, 𝑡) denotes

the average instantaneous flux of thermal neutrons in the NCV liquid15 per proton on

target at position 𝐫 and time 𝑡, then the average value of Φ𝑛(𝐫, 𝑡) over the NCV liquid
12i.e., the cross section for a single target nucleus
13The ratio of the average cross section for room-temperature thermal neutrons obeying a Maxwell-

Boltzmann distribution to the cross section for 2.2 km/s neutrons.
14i.e., the time-integrated flux
15The total length traveled by all thermal neutrons in the NCV liquid per unit time and volume. This

definition is the standard one in nuclear reactor physics. It is equivalent to the number of neutrons
penetrating a sphere with unit cross sectional area per unit time from all sides [452].
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volume 𝜓𝑛(𝑡) is given by

𝜓𝑛(𝑡) = 1
𝑉NCV

∫
NCV liquid

Φ𝑛(𝐫, 𝑡) 𝑑3𝐫 (8.6)

and the average thermal neutron fluence per proton on target 𝜙𝑛 is given by

𝜙𝑛 = ∫
ROI

𝜓𝑛(𝑡) 𝑑𝑡 (8.7)

where the integration is over the time region of interest for Phase I (10 μs to 70 μs post-

beam). The quantity 𝜙𝑛 may be expressed in units of thermal neutrons per cm2 per

POT.

The average neutron capture rate in the NCV liquid ℛNCV
𝑛 , which may expressed in

units of neutron captures per m3 per POT, is given by

ℛNCV
𝑛 = 𝜙𝑛 ΣNCV = 𝑁𝑛

𝒫 𝜖NCV 𝑉NCV
. (8.8)

To convert ℛNCV
𝑛 into the corresponding predicted neutron capture rate within the

Phase II water volume ℛII
𝑛 , two changes must be made. First, since the gadolinium-loaded

water that will be used in Phase II has a macroscopic cross section16 ΣII = 18.70(5) m−1

that is different from that of the NCV liquid, the measured NCV capture rate must be

scaled by the ratio of the macroscopic cross sections. Second, because of the difference

in the thermal neutron capture cross sections for the two materials, the average thermal

neutron fluence per proton on target 𝜙𝑛 will also have a different value 𝜙II
𝑛 for the Phase

II water.

Although the exact value of 𝜙II
𝑛 may be difficult to predict, we may estimate the ratio

𝑓 = 𝜙II
𝑛 /𝜙𝑛 by assuming that the different thermal capture cross sections for the two ma-

terials do not appreciably affect the spatial averaging performed in eq. (8.6). We further

assume that, for both materials, the average thermal neutron flux per proton on target

𝜓𝑛(𝑡) may be written as the convolution of some unknown function 𝑇 (𝑡), representing

the time distribution of thermal neutrons arriving in the NCV liquid (or the correspond-

ing volume of the Phase II gadolinium-loaded water) and a decaying exponential that
16Cross section data from reference [451] were used to obtain the numerical value of ΣII given here.
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represents the distribution of capture times for thermal neutrons within the material of

interest:

𝜓𝑛(𝑡) = ∫
𝑡

0
𝑇 (𝑠) 𝑒−(𝑡−𝑠)/𝜏NCV 𝑑𝑠 (8.9)

𝜓II
𝑛 (𝑡) = ∫

𝑡

0
𝑇 (𝑠) 𝑒−(𝑡−𝑠)/𝜏II 𝑑𝑠 (8.10)

Here the time constants 𝜏NCV and 𝜏II are defined by

𝜏NCV = ΣNCV 𝑣thermal = 12.2 μs (8.11)

𝜏II = ΣII 𝑣thermal = 24.3 μs (8.12)

where 𝑣thermal = 2.2 km/s is the most probable speed for thermal neutrons at room

temperature. Using the definitions above, one may write

𝑓 = 𝜙II
𝑛

𝜙𝑛
=

∫
ROI

𝜓II
𝑛 (𝑡) 𝑑𝑡

∫
ROI

𝜓𝑛(𝑡) 𝑑𝑡
=

∫60 μs
0

∫𝑡
0

𝑇 (𝑠)𝑒(𝑠−𝑡)/𝜏II 𝑑𝑠 𝑑𝑡

∫60 μs
0

∫𝑡
0

𝑇 (𝑠)𝑒(𝑠−𝑡)/𝜏NCV 𝑑𝑠 𝑑𝑡
. (8.13)

The arrival time distribution for the thermal neutrons 𝑇 (𝑡) is unknown, but it may be

reasonably assumed to lie between two extreme cases: (1) a delta function at time 𝑡 = 0,

which corresponds to all of the thermal neutrons arriving at the beginning of the Phase

I time region of interest, and (2) a delta function at the end of the ROI, time 𝑡 = 60 μs.

Evaluating eq. (8.13) for the first case gives

𝑓 =
∫60 μs
0

∫𝑡
0

𝐴 𝛿(𝑠) 𝑒(𝑠−𝑡)/𝜏II 𝑑𝑠 𝑑𝑡

∫60 μs
0

∫𝑡
0

𝐴 𝛿(𝑠) 𝑒(𝑠−𝑡)/𝜏NCV 𝑑𝑠 𝑑𝑡
=

∫60 μs
0

𝑒−𝑡/𝜏II 𝑑𝑡

∫60 μs
0

𝑒−𝑡/𝜏NCV 𝑑𝑡
= 1.83. (8.14)

The integrals in the second case are trivial, and one obtains the exact result 𝑓 = 1

regardless of the numerical values of 𝜏𝑡𝑒𝑥𝑡𝐼𝐼 and 𝜏NCV. For comparison, assuming 𝑇 (𝑡) =

𝐴 for some constant 𝐴 (which implies a uniform distribution of thermal neutron arrivial

times) yields the result

𝑓 =
∫60 μs
0

∫𝑡
0

𝐴 𝑒(𝑠−𝑡)/𝜏II 𝑑𝑠 𝑑𝑡

∫60 μs
0

∫𝑡
0

𝐴 𝑒(𝑠−𝑡)/𝜏NCV 𝑑𝑠 𝑑𝑡
=

∫60 μs
0

𝜏II (1 − 𝑒−𝑡/𝜏II) 𝑑𝑡

∫60 μs
0

𝜏NCV (1 − 𝑒−𝑡/𝜏II) 𝑑𝑡
= 1.59. (8.15)
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As noted above, one may obtain the neutron capture rate for Phase II by multiplying

ℛNCV
𝑛 by suitable correction factors:

ℛII
𝑛 = ℛNCV

𝑛
ΣII

ΣNCV
𝑓 = 𝜙𝑛ΣNCV

ΣII 𝜙II
𝑛

ΣNCV 𝜙𝑛
= 𝜙II

𝑛 ΣII. (8.16)

Since ΣII/ΣNCV = 0.50 and, based on the extreme cases above, 𝑓 ∈ [1, 1.83], it follows

from eq. (8.16) that ℛII
𝑛 < ℛNCV

𝑛 regardless of the functional form of the arrival time

distribution 𝑇 (𝑡) of thermal neutrons reaching the NCV liquid.

The measured neutron capture rate in the NCV ℛNCV
𝑛 therefore represents a robust

upper limit on the expected neutron capture rate at the corresponding location in the

Phase II water tank. Chapter 9 will present an analysis of the Phase I beam data leading

to values for 𝑁𝑛, the observed number of candidate neutron capture events, at each of

the seven NCV positions studied in ANNIE Phase I. In chapter 10, the NCV detection

efficiency 𝜖NCV will be studied using two different methods. Finally, in chapter 11, these

results will be combined using eq. (8.8) to obtain ℛNCV
𝑛 , an upper limit for the expected

background neutron event rate in ANNIE Phase II, at each of the NCV positions where

beam data were recorded.
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Chapter 9

Neutron candidate event selection

As discussed in the previous chapter, one of the key ingredients for a determination of

the position-dependent neutron backgrounds in the Phase I ANNIE detector is the rate

of observed neutron captures in the NCV. In this chapter, a procedure is described for

identifying candidate neutron capture events while removing backgrounds due to cosmic

rays, beam-induced muons, etc. Measurements of the neutron capture rates in the NCV

at different positions in the Phase I tank are then presented. In the following chapter,

a determination of the NCV efficiency will be made that will allow the raw rates dis-

cussed here to be converted into expected background neutron event rates in the Phase

II detector.

9.1 PMT waveform processing

The primary raw data of interest for the Phase I measurement consist of digitized wave-

forms from the two photomultiplier tubes (PMTs) fixed to the top of the NCV and the 60

PMTs placed at the bottom of the water tank. During early Phase I operations, four of

the water tank PMTs were found to be damaged and were disconnected from the DAQ,

leaving 56 active water tank PMTs. As described in section 8.5, the DAQ readout scheme

was upgraded during Phase I data taking. Early beam runs used a normal mode in which

the PMT signals were continuously digitized during an 80 μs time window. Later runs

used a zero suppression mode in which 2 μs minibuffers of interest were digitized and read

out from the detector in a buffer consisting of 40 minibuffers. For both readout schemes,
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all of the PMT waveforms were sampled by an analog-to-digital converter (ADC) at a

rate of 500 MHz. The digitized signals were saved to disk and analyzed offline using

the ROOT data analysis framework [449] and an ANNIE-specific software package called

ToolAnalysis.1

9.1.1 Waveform calibration

The first step needed to reconstruct the flashes of light detected by the photomultiplier

tubes is to convert the ADC counts recorded in the raw data files into voltages. This may

be done for the ANNIE ADC cards using the relation

𝑉PMT = 2.415 V
212 ADC counts

(𝑥ADC − 𝑥0), (9.1)

where 𝑥ADC is the recorded ADC value and 𝑉PMT is the corresponding voltage. The

parameter 𝑥0, which represents the baseline ADC value (i.e., the ADC reading when

no charge is being deposited on the PMT anode), must be estimated using the raw

data. Because the value of 𝑥0 may fluctuate over time due to electronic noise, pickup

of external interference, etc., this must be done for each PMT in each DAQ readout

buffer individually.

To estimate the ADC baseline 𝑥0 of a PMT trace, ToolAnalysis uses an algorithm

created for ZE3RA (ZEPLIN 3 Reduction Analysis) [453], a data analysis computer

code developed for the ZEPLIN-III dark matter experiment. When analyzing normal

mode data, the ANNIE implementaton of the algorithm splits the pre-trigger portion of

the PMT trace into 𝑀 regions, each containing 𝑁 samples. The sample mean 𝜇𝑗 and

variance 𝜎2
𝑗 for the ADC values recorded in the 𝑗th region are given by the formulas

𝜇𝑗 ≡ 1
𝑁

𝑁

∑
𝑘=1

𝑥𝑗,𝑘 (9.2)

𝜎2
𝑗 ≡

∑𝑁
𝑘=1(𝑥𝑗,𝑘 − 𝜇𝑗)2

𝑁 − 1
(9.3)

where 𝑥𝑗,𝑘 is the 𝑘th ADC value in the 𝑗th region of the PMT trace. To enable efficient

calculation of these statistics in a single pass over the raw data, a technique due to Welford
1ToolAnalysis is based on the ToolDAQ framework (http://github.com/ToolDAQ/

ToolDAQFramework) developed by Benjamin Richards.
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[454] is used, in which the quantities

𝜇𝑗,𝑘 = 𝜇𝑗,𝑘−1 +
𝑥𝑗,𝑘 − 𝜇𝑗,𝑘−1

𝑘
with 𝜇𝑗,0 = 0 (9.4)

𝐴𝑗,𝑘 = 𝐴𝑗,𝑘−1 + (𝑥𝑗,𝑘 − 𝜇𝑗,𝑘−1)(𝑥𝑗,𝑘 − 𝜇𝑗,𝑘) with 𝐴𝑗,0 = 0 (9.5)

are computed iteratively for the data points in the 𝑗th region, yielding the desired values

𝜇𝑗 = 𝜇𝑗,𝑁 (9.6)

𝜎2
𝑗 =

𝐴𝑗,𝑁

𝑁 − 1
(9.7)

when 𝑘 = 𝑁.

After the sample statistics for all of the 𝑀 regions are calculated, the sample variances

of neighboring regions are compared with each other for statistical consistency. This check

is intended to exclude electrical transients and true PMT pulses (which would bias the

baseline estimation) that occur during the pre-trigger time window. Under the assumption

that the ADC values from the 𝑗th and (𝑗 + 1)th regions are independent simple random

samples drawn from normal populations with the same variance, the ratio 𝑅 of their

sample variances

𝑅 =
𝜎2

𝑗

𝜎2
𝑗+1

(9.8)

follows an F distribution on the domain [0, ∞) with 𝑛 = 𝑁 − 1 degrees of freedom for the

numerator in eq. (9.8) and another 𝑚 = 𝑁 − 1 degrees of freedom for the denominator

[455]. This distribution has the cumulative distribution function [456]

𝐹𝑛,𝑚(𝑅) = 𝐼 ( 𝑛𝑅
𝑚 + 𝑛𝑅

; 𝑛
2

, 𝑚
2

) (9.9)

where 𝐼(𝑧; 𝑎, 𝑏) is the regularized beta function

𝐼(𝑧; 𝑎, 𝑏) = Γ(𝑎 + 𝑏)
Γ(𝑎) Γ(𝑏)

∫
𝑧

0
𝑡𝑎−1 (1 − 𝑡)𝑏−1 𝑑𝑡 (9.10)

and the gamma function Γ(𝑛) for a complex number 𝑧 with a positive real part is given

by

Γ(𝑧) = ∫
∞

0
𝑥𝑧−1 𝑒−𝑥 𝑑𝑥. (9.11)
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A useful property of the regularized beta function is that [457]

𝐼(𝑧; 𝑎, 𝑏) = 1 − 𝐼(1 − 𝑧; 𝑏, 𝑎). (9.12)

For the 𝑀 − 1 pairs of neighboring regions, therefore, the probability 𝑄𝑗 that the test

statistic

𝑅𝑗 ≡
⎧{
⎨{⎩

𝜎2
𝑗 /𝜎2

𝑗+1 𝜎𝑗 > 𝜎𝑗+1

𝜎2
𝑗+1/𝜎2

𝑗 𝜎𝑗 ≤ 𝜎𝑗+1

(9.13)

would be at least as large as actually observed (accepting the null hypothesis that ADC

values in the two regions were drawn from normal distributions with equal variances) is

given by

𝑄𝑗 = 1 − 𝐹𝑁−1,𝑁−1(𝑅𝑗) = 1 − 𝐼 (
[𝑁 − 1] 𝑅𝑗

[𝑁 − 1] + [𝑁 − 1] 𝑅𝑗
; 𝑁 − 1

2
, 𝑁 − 1

2
) (9.14)

= 1 − 𝐼 (
𝑅𝑗

1 + 𝑅𝑗
; 𝜈, 𝜈) = 𝐼 ( 1

1 + 𝑅𝑗
; 𝜈, 𝜈) = Γ(2𝜈)

2Γ(𝜈)
∫

(1+𝑅𝑗)−1

0
(𝑡 − 𝑡2)𝜈−1 𝑑𝑡 (9.15)

where 𝜈 ≡ (𝑁 − 1)/2. Equation (9.12) was used in the penultimate step above.

In order to adequately test the equality of variance hypothesis, unusually small values

of 𝑅𝑗 should be rejected as well as unusually large ones. Conveniently, eqs. (9.9) and (9.12)

imply that such a two-tailed hypothesis test may be performed by simply doubling 𝑄𝑗

[457]. The quantity 𝑃𝑗 ≡ 2𝑄𝑗 represents, assuming the truth of the null hypothesis,

the probability of observing a deviation from equality of the sample variances at least as

extreme as that actually obtained.

Thus, 𝑃𝑗 is a p-value that may be used to test the hypothesis that the population

variances for the 𝑗th and the (𝑗 + 1)th regions are equal. This hypothesis is rejected2

for a given critical value 𝑃crit whenever 𝑃𝑗 ≤ 𝑃crit. The 𝐿 regions for which the F-test
2Confusingly, the sole publication [453] describing in detail the algorithms implemented in the ZE3RA

code claims that only regions for which (in the notation used in the present discussion) 𝑄𝑗 < 𝑄crit
(where 𝑄crit ≡ 10−4) should be used to compute the estimates for 𝑥0 and 𝜎𝑥0

. This appears to indicate
that only regions whose variances differ quite noticeably from their neighbors are accepted by ZE3RA as
suitable for use in estimating the baseline. Because this runs counter to the statement in reference [453]
that the F-test is used “to check if the variances are statistically consistent,’’ however, it appears that
there is a misprint in the original description of the algorithm. Unfortunately, the ZE3RA code has not
been made publicly available so that its true behavior may be verified.
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described above fails to reject the null hypothesis are then used to estimate the baseline

for the PMT trace of interest via the formulas

𝑥0 = 1
𝐿

𝐿

∑
ℓ=1

𝜇ℓ 𝜎𝑥0
= ( 𝑁 − 1

𝑁𝐿 − 1

𝐿

∑
ℓ=1

𝜎2
ℓ )

1/2

(9.16)

where 𝜎𝑥0
is the estimated error on 𝑥0 and the sums are over all regions for which 𝑃𝑗 >

𝑃crit. The expressions given in eq. (9.16) are equivalent to computing the mean (𝑥0) and

standard deviation (𝜎𝑥0
) of the combined sample of all ADC values in the 𝐿 regions for

which 𝑃𝑗 > 𝑃crit.

For the analysis of the ANNIE Phase I data, 𝑀 = 40 regions of 𝑁 = 25 samples

were used, with a significance level of 𝑃crit = 0.01 required to reject the null hypothesis.

When zero-suppressed data were analyzed, instead of using the first 𝑀 sets of 𝑁 samples

to estimate the baseline, each minibuffer contributed one of the 𝑀 = 40 regions, with the

first 𝑁 = 25 samples of the minibuffer being used to compute the sample statistics. The

estimated baseline for zero suppression mode, which was otherwise computed using the

same technique as for normal mode, was assumed to remain constant over the full PMT

trace.

Using the estimated baseline ADC value 𝑥0 defined in eq. (9.16), ToolAnalysis pro-

duces calibrated versions of the PMT traces, stored in memory alongside the raw traces,

by applying the conversion formula eq. (9.1) to each of the raw samples.

9.1.2 PMT pulse finding

When a photon strikes the photocathode of a PMT and successfully initiates an electron

cascade, the current generated at the anode will appear in the PMT waveform as a pulse

whose area is proportional to the total deposited charge. Characterizing the pulses that

appear in a PMT trace therefore provides information about the arrival time and intensity

of the flashes of light detected by the PMT.

ToolAnalysis finds pulses in PMT traces using a simple procedure. Starting with the

first sample in a trace, ADC values are checked one by one until a given threshold is

exceeded. The sample for which this first occurs is defined as the start of the pulse. The

following samples continue to be checked until one of the following conditions occurs:
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(1) an ADC value is found that falls below the estimated baseline plus its 1-sigma error

(i.e., below 𝑥0 +𝜎𝑥0
in the notation of the previous section), (2) the end of the PMT trace

is reached, or (3) for zero-suppressed data, the end of the current minibuffer is reached.

The first sample which fulfills any of these criteria is considered the end of the pulse.

To ensure that normal and zero-suppressed data (the latter of which used a hardware

threshold of 357 ADC counts for both NCV PMT channels) are treated on an equal

footing, pulses are found using the raw PMT traces (which continue to use ADC units)

rather than the calibrated ones. This ensures that, as long as the software pulse finding

threshold is set at or above 357 ADC counts for the two NCV PMTs, the same set of

pulses would be reconstructed for an event regardless of which triggering mode was used

to record it.

For the ANNIE Phase I analysis shown in this thesis, a constant threshold of 357

ADC counts was used when finding pulses on traces from both NCV PMTs. For all other

PMT channels, a threshold of 𝑥0 + 7 ADC counts (rounded to the nearest integer) was

used, where 𝑥0 was the estimated baseline for the channel.

After finding the starting and ending samples for a pulse in a given PMT trace,

ToolAnalysis characterizes the pulse using the following parameters:

start time The time since the beginning of the trace (or, in zero suppression mode, the

beginning of the current minibuffer) at which the pulse began. This is defined as

the starting sample index multiplied by the sampling period (2 ns for 500 MHz

sampling).

peak time The time at which the maximum ADC value occurred within the pulse. If

the maximum ADC value was reached more than once during the pulse, then the

earliest sample for which this occurred is used to calculated the peak time.

end time The time corresponding to the first sample after the start of the pulse at which

either the ADC signal fell below 𝑥0 + 𝜎𝑥0
, the PMT trace ended, or, in the case of

zero-suppressed data, the current minibuffer ended.

raw amplitude The maximum ADC value recorded during the pulse
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calibrated amplitude The maximum voltage recorded during the pulse. This is calculated

using eq. (9.1) with 𝑥ADC set equal to the raw amplitude of the pulse.

charge The time integral of the calibrated version of the pulse, divided by the ADC

input impedance, which is taken to be 50 Ω.

9.2 Determination of beam conditions

Before performing any further analysis on the PMT pulses, the ANNIE reconstruc-

tion software associates information from the instruments monitoring production of the

Booster Neutrino Beam (see section 8.1) with the PMT traces. This information is re-

trieved from the Beam Conditions Database for Intensity Frontier Experiments (IFBeam

DB) [458], a web-accessible collection of monitoring data for all of the neutrino beamlines

at Fermilab.

The data server for the IFBeam DB3 retrieves beam monitoring data for a single

device or for a “bundle’’ of related devices in response to HTTP requests. Data from the

monitoring devices of primary interest for users of the ANNIE detector are included in

the BNBBPMTOR (“Booster Neutrino Beam: Beam Position Monitors and Toroids’’) bundle.

Data in the BNBBPMTOR bundle may be retrieved from the IFBeam DB in CSV4 format

by accessing the URL5

http://ifb-data.fnal.gov:8100/ifbeam/data/data?e=e%2C1d&b=BNBBPMTOR

&f=csv&tz=&action=Show+device&t0=T0&t1=T1

where T0 and T1 should be replaced with the initial and final times of interest, respec-

tively, expressed in terms of the number of seconds since the Unix epoch.6 Queries with

values of T0 and T1 that differ by more than one day are likely to be rejected by the

server.
3http://ifb-data.fnal.gov:8100/ifbeam/data/index
4Comma-separated values
5Uniform Resource Locator
6That is, the number of seconds since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1

January 1970. Timestamps of this kind are easily calculated using command-line programs such as
GNU date (included by default with most Linux distributions) or web applications like https://www.
epochconverter.com/.
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To avoid overwhelming the IFBeam DB data server with frequent requests for beam

status information during the offline ANNIE data analysis, the entire contents of the

database covering the time period of interest for ANNIE Phase I data taking were down-

loaded and stored in a compressed format. Copies of the compressed file were then used

to obtain beam status information during Phase I data processing.

To ensure that the beam was operating normally for all spills included in the back-

ground neutron rate analysis, three beam quality checks were applied to each set of PMT

traces recorded in response to a beam trigger. The first check required the number of pro-

tons on target (POT) measured by Toroid 875 (referred to as E:TOR875 in the IFBeam

DB) to be between 0.5 × 1012 and 6 × 1012 POT. Typical intensity values for the Booster

Neutrino Beam observed during ANNIE Phase I running were between 4 × 1012 POT to

5 × 1012 POT. The second check, adopted from earlier studies using the SciBooNE de-

tector [459], required the POT measurements recorded by the two beam current toroids

(E:TOR875 and E:TOR860) to agree within 10%, i.e.,

2 ×
∣TOR875 − TOR860∣
TOR875 + TOR860

< 10% (9.17)

where TOR875 and TOR860 are the POT measurements for the beam spill of interest

made using the two toroids. The third check, intended to ensure that the horn was

focusing the beam properly, required that the peak horn current for each beam spill was

between 172 kA and 176 kA, with 174 kA being the nominal value.

Data from beam spills that failed any one of these beam quality checks were flagged

and excluded from the rest of the analysis. When the minimum POT requirement was

fulfilled, only a very small fraction of spills failed any of the remaining beam quality

checks.

9.3 Event selection

After searching for pulses on all of the PMT traces contained in a full DAQ readout, the

ToolAnalysis code then searches for neutron capture candidate events. Four criteria were

adopted for identifying neutron candidate events during the ANNIE Phase I analysis:
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NCV coincidence requirement Both NCV PMTs must fire within 40 ns of each other.

The event time is defined as the start time for the earlier of the two coincident pulses.

Afterpulsing cut A new event must occur at least 10 μs after the preceding event.

Total charge cut The sum of the charges of the two coincident NCV PMT pulses must

be less than 150 pC.

Outer PMT veto cut Less than 8 tank PMTs must fire within 40 ns of the event time.

The rationales for each of these criteria are discussed below using beam data from NCV

position #2 (the center of the tank) for illustration.

9.3.1 NCV coincidence requirement

The black curve in fig. 9.1 shows the time distribution (relative to the start of the beam

crossing the ANNIE detector) for all of the reconstructed pulses found on NCV PMT #1

during beam data taking in zero suppression mode at NCV position #2 (the center of

the tank). Two features of the distribution are immediately apparent. First, there is a

dominant flat component composed primarily of dark pulses. Second, in addition to the

beam crossing peak beginning at time 𝑡 = 0 μs, a second peak attributable to afterpulsing

appears roughly 5 μs later.

To minimize the number of spurious events caused by dark noise and afterpulsing,

neutron capture candidate events were selected by looking for coincident pulses on both

NCV PMTs. An NCV coincidence of this kind was defined as a pair of pulses, one from

the trace of NCV PMT #1 and the second from the trace of NCV PMT #2, whose start

times (calculated as described in section 9.1.2) differed by less than 40 ns. The start time

for the earlier of the two coincident pulses is considered the time of the NCV coincidence

event. The blue curve in fig. 9.1 shows the time distribution of NCV coincidences for

the same dataset as the black curve. While the beam crossing peak at 𝑡 = 0 μs is still

present, the second peak at 5 μs has disappeared, suggesting that it was largely composed

of afterpulses on NCV PMT #1.
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Figure 9.1: Successive applications of each of the neutron candidate event criteria for
zero-suppressed beam data taken at position #2 (center of the tank). BLACK: Time

distribution of all pulses recorded in zero suppression mode on NCV PMT #1 at
position #2. No analysis cuts have been applied to these data. Starting from the left

hand side of the plot, the first peak coincides with the neutrino beam crossing the
ANNIE detector, while the second is attributable to afterpulsing. BLUE: Time

distribution of all NCV coincidences from the same dataset. RED: Events from the blue
histogram that passed the afterpulsing cut. GREEN: Events from the red histogram
that passed the total charge cut. ORANGE: Events from the green histogram that

passed the outer PMT veto cut. These are considered neutron candidates in the
background event rate analysis.



0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

time since last NCV coincidence (μs)

co
un

ts

Figure 9.2: Distribution of the elapsed time since the previous event for NCV
coincidences from the blue histogram in fig. 9.1. The plot includes only the small
minority (about 4%) of the NCV coincidence events that occurred within the first

100 μs. The remaining events, not shown in the plot, occurred far later (at least 10 ms
since the previous event).

9.3.2 Afterpulsing cut

Although requiring the two NCV PMTs to fire in coincidence during a neutron candidate

event was sufficient to suppress the obvious afterpulsing peak seen in the black histogram

from fig. 9.1, this requirement will not fully eliminate false events due to afterpulses.

Evidence for their continuing contribution to the event rate can be seen in fig. 9.2, which

shows the distribution of elapsed times since the preceding event for the small fraction of

NCV coincidences in the blue histogram from fig. 9.1 that occurred within the first 100 μs.

The distribution is dominated by the 92% of these NCV coincidences that happened

less than 10 μs after the previous event, as one would expect if afterpulsing remains a

significant problem.
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To ensure that spurious events due to afterpulsing were eliminated as much as possible

from the measured NCV event rates, only NCV coincidences that occurred at least 10 μs

after the previous event were accepted as neutron candidates. The red histogram in fig. 9.1

shows the small effect of applying this cut to the position #2 beam data.

9.3.3 Total charge cut

While the event criteria discussed so far are useful for removing NCV coincidences at-

tributable to dark counts and afterpulsing, they do little to suppress backgrounds caused

by cosmic and beam-induced muons crossing the NCV. Such muons will deposit relatively

large amounts of energy in the scintillator, leading to intense light production and often

to large pulses on both NCV PMTs. To veto events with energy deposits in the scin-

tillator far higher than the maximum of nearly 9 MeV that would be expected from a

fully-contained neutron capture 𝛾-ray cascade (see fig. 10.11), a cut on the total charge

collected by the two NCV PMTs was imposed. Based on the NCV charge-to-energy cali-

bration described in section 10.2.1, a conservative maximum total charge 𝑄max = 150 pC

was adopted, which corresponds to (see eq. (10.24) and table 10.2) a deposited energy

of about 34 MeV. The green histogram in fig. 9.1 shows the events that remain after

applying the cut 𝑄1 + 𝑄2 < 𝑄max (where 𝑄1 and 𝑄2 are the charges collected by NCV

PMTs #1 and #2, respectively) to the events in the red histogram.

9.3.4 Outer PMT veto cut

Beyond the easily recognized muon candidate events that deposit large amounts of energy

in the scintillator, there will also be significant numbers of “corner clippers,’’ i.e., muons

that exit the NCV after traveling only a short distance through the scintillator. Because

these muons may deposit an energy low enough to be mistaken for a neutron capture,

the NCV total charge cut will not be an effective means of excluding them. However,

although some muons will stop in the NCV, and some will enter the tank with energies

below the Cherenkov threshold (about 55 MeV kinetic energy), many will produce enough

light within the water volume to be detected by the PMTs at the bottom of the tank.

Because neutron captures occurring in the optically isolated NCV are expected to produce
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Figure 9.3: Results of an NCV containment simulation study performed using
RAT-PAC. Thermal neutron tracks were started one at a time from locations sampled

uniformly within a 50 cm radius sphere centered on the NCV, which was placed at
position #2 (center of the tank). BLUE: Monte Carlo estimate of the probability

distribution for the number of unique tank PMTs that will collect at least one
photoelectron as a result of a neutron capture occurring within the NCV liquid. RED:

The same distribution for neutrons that capture outside the NCV liquid. Only
photoelectrons whose origin can be traced back to the neutron capture are considered in

the simulation.

pulses on few, if any, of the water tank PMTs (see fig. 9.3), the tank PMTs may therefore

serve as a muon veto for the NCV.

The blue data points in fig. 9.4 show a histogram of the number of water tank PMTs

that recorded a pulse within 40 ns of an NCV coincidence event. The bimodal shape of

the histogram, with clear peaks at zero and fifty-five coincident tank PMTs, agrees well

with the expected topology of two kinds of NCV events: neutron captures within the

NCV, which will typically result in only a modest amount of activity on the tank PMTs;

and muons crossing the NCV, which are likely to generate pulses on many of the tank
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Figure 9.4: Distributions of the number of unique water tank PMTs that recorded at
least one pulse within 40 ns of activity in the NCV. For the blue dataset, “activity’’ is

defined as an NCV coincidence, while for the red dataset it is defined as a pulse on NCV
PMT #2 without a coincident pulse on NCV PMT #1. Both datasets were created

using all runs analyzed for this thesis. No analysis cuts have been applied.

PMTs in addition to the two NCV PMTs.

To veto the contribution of “corner clipper’’ cosmic muons to the observed NCV event

rate, only NCV coincidences for which less than eight tank PMTs fired within 40 ns of the

start of the event were accepted as neutron candidates. The orange histogram in fig. 9.1

shows the result of applying this cut to the events in the green histogram.

Confirmation that the total charge cut and the outer PMT veto cut are indeed effective

for removing muons can be obtained from data taken using the cosmic ray trigger described

in section 8.4.5. In fig. 9.5, the distribution of the total charge collected on both NCV

PMTs is shown for NCV coincidence events recorded within the 2 μs following a trigger

consistent with a cosmic muon traveling downward through the NCV. While many events

pass the afterpulsing cut (as shown by the blue dataset), applying the total charge and
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Figure 9.5: BLUE: Distribution of the total charge collected on both NCV PMTs for
NCV coincidence events that passed the afterpulsing cut. All events shown here were

recorded within 2 μs of a cosmic trigger consistent with a downward muon passing
through the NCV. RED: The corresponding charge distribution when all neutron

candidate event cuts have been applied.

outer PMT veto cuts yields the red dataset, in which only a handful of events remain.

9.4 Cut corrections

Before presenting the measured neutron capture rates obtained using the event criteria

discussed above, we must consider and correct for possible systematic errors that could be

introduced by each of the analysis cuts. Because the goal of the ANNIE Phase I measure-

ment is to establish whether or not the background neutron event rates are sufficiently

low for Phase II to proceed, we will be primarily interested in systematic effects that

could result in an underestimate of the true rates. In the sections below, the possible

introduction of such a negative bias by each of the three analysis cuts is considered.
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9.4.1 Afterpulsing cut

The afterpulsing cut introduces 10 μs of artificial dead time after each NCV coincidence

event. Under the assumption that the events occur independently of one another, the

probability 𝑃(𝑘) that 𝑘 events will occur in the region of interest during a single beam

spill is given by the Poisson distribution

𝑃(𝑘) = 𝜆𝑘𝑒−𝜆

𝑘!
(9.18)

where 𝜆 is the average number of events in the region of interest during a single beam

spill. The probability 𝑃(𝑘 ≥ 1) of observing at least one event is given by

𝑃(𝑘 ≥ 1) = 𝑃(𝑘 > 0) = 1 − 𝑃(0) = 1 − 𝑒−𝜆. (9.19)

If it is known that at least one event was observed, then the conditional probability of

observing at least two events is given by

𝑃(𝑘 ≥ 2 | 𝑘 ≥ 1) = 𝑃(𝑘 ≥ 2)
𝑃(𝑘 ≥ 1)

= 1 − 𝑃(0) − 𝑃(1)
1 − 𝑃(0)

= 1 − 𝑒−𝜆 − 𝜆𝑒−𝜆

1 − 𝑒−𝜆 . (9.20)

For small 𝜆, the probability of observing more than two events may be neglected, and one

may write

𝑃(2 | 𝑘 ≥ 1) ≈ 𝑃(𝑘 ≥ 2 | 𝑘 ≥ 1). (9.21)

If it is known that two events were observed, then the conditional probability 𝑃(Δ𝑡 <

10 μs | 2) that the second event occurs within 10 μs of the first may be roughly estimated

assuming a uniform distribution of event times within the region of interest:

𝑃(Δ𝑡 < 10 μs | 2) ≈ 10 μs
Δ𝑇ROI

. (9.22)

Here Δ𝑇ROI = 60 μs is the duration of the region of interest for thermal neutron captures.

Under the assumptions described above, the probability 𝑃fail afterpulse that a true event will

be vetoed by the afterpulsing cut is approximately given by

𝑃fail afterpulse ≈ 𝑃(Δ𝑡 < 10 μs | 2) ⋅ 𝑃 (2 | 𝑘 ≥ 1) = 1
6

(1 − 𝑒−𝜆 − 𝜆𝑒−𝜆

1 − 𝑒−𝜆 ) (9.23)
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where, for a given NCV position, the average number of events 𝜆 may be estimated using

the expression

𝜆 =
𝒩no afterpulsing cut

𝑁spills
. (9.24)

Here, 𝒩no afterpulsing cut is the number of NCV coincidence events in the region of interest

after all cuts except the afterpulsing cut have been applied, and 𝑁spills is the number of

beam spills for which data were recorded at the given NCV position.

One could correct for the dead time introduced by the afterpulsing cut by adding to

the number of observed neutron candidates the product of 𝑃fail afterpulse and the number

of events observed at a particular NCV position that passed all cuts except for the after-

pulsing cut. For the measurements taken in ANNIE Phase I, however, this correction was

found to be negligible at all NCV positions.

At the beginning of this section, the assumption was made that all of the NCV coin-

cidence events are independent. While spurious events due to afterpulsing badly violate

this assumption, the cut under discussion is specifically designed to remove them, so this

is of no concern. A more problematic violation of the independence assumption, how-

ever, can be seen if one examines the orange histogram in fig. 9.1, which represents the

time distribution (relative to the beam crossing at 𝑡 = 0 μs) of neutron candidate events

recorded at NCV position #2 (center of the tank).

Although a significant number of neutron candidate events occur approximately in

time with the beam (consider the relatively large peak that is present during the first

5 μs), the cause of these events is unlikely to be neutron captures within the NCV. For

high energy neutrons that may arrive in the detector nearly in time with the beam crossing,

the probability of immediate capture will be low. On the other hand, thermal neutrons

will have a relatively high capture probability, but they will arrive in the detector much

later than the beam.

Rather than being caused by neutron captures, the neutron candidate events that

occur during the first several μs after the beam crossing are more readily explained as

being the result of proton recoils induced by high-energy neutrons within the NCV liquid.

Because a neutron that caused such a proton recoil event could subsequently capture
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within the NCV liquid, a second NCV event that appears within 10 μs of the proton

recoil cannot always be attributed to afterpulsing.

As a conservative means of ensuring that captures following the proton recoils seen in

time with the beam are never misidentified as afterpulses, all events that occurred within

the first 10 μs of the region of interest and failed the afterpulsing cut but passed all

other cuts were added to the total number of observed neutron candidates. Because this

approach is overly cautious, a 100% systematic error on the correction is also adopted,

i.e., if 𝑁10 μs is the number of events within the first 10 μs of the region of interest that

failed only the afterpulsing cut, then the quantity 𝑁10 μs ± 𝑁10 μs (syst) is added to the

number of events in the region of interest that pass all cuts.

9.4.2 Outer PMT veto cut

The outer PMT veto cut introduces at least two ways in which true neutron capture events

within the NCV may be misidentified as originating from cosmic muons: (1) some neutron

capture 𝛾-rays will escape the NCV, scatter within the water volume, and produce light

detected by the tank PMTs, and (2) some true neutron captures within the NCV will

occur in coincidence with unrelated tank activity, e.g., a cosmic muon entering the tank.

To obtain a conservative upper bound on the probability that a poorly-contained

neutron capture within the NCV would generate pulses on at least 8 tank PMTs (and

therefore fail the cut), simulations of thermal neutron captures occurring in and around the

NCV were performed using RAT-PAC (Reactor Analysis Tool, Plus Additional Codes)

[460], a water Cherenkov detector simulation framework based on Geant4 [440]. The

simulated NCV was placed at position #2 (the center of the tank) to maximize the

number of tank PMTs that would collect photons as a result of each neutron capture.

The simulation results, shown in fig. 9.3, indicate that less than 2% of neutron captures

within the NCV liquid will lead to more than three tank PMTs detecting at least one

photoelectron each, while even fewer (less than 0.1%) of neutron captures outside the

liquid scintillator will do the same.

While the RAT-PAC results suggest that the leakage of neutron capture 𝛾-rays from

the NCV will only very infrequently lead to an event failing the outer PMT veto cut,
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unrelated tank PMT activity in coincidence with a true neutron capture could have a

more important effect. To estimate the probability that eight or more tank PMTs would

fire in accidental coincidence with an unrelated NCV event, the full population of pulses

(from the Phase I data considered in this thesis) recorded by NCV PMT #2 without

a coincident (within 40 ns) pulse on NCV PMT #1 was analyzed. The red dataset

from fig. 9.4 shows a histogram of the number of unique tank PMTs that fired within

40 ns of each NCV PMT #2 pulse. Since a large fraction of the pulses on one of the

NCV PMTs that do not have a corresponding pulse on the second will be due to dark

counts, the histogram approximately represents a probability distribution for the number

of tank PMTs that will fire in accidental coincidence with the NCV PMTs. Integrating

the histogram from 8, the minimum number of tank PMTs needed to fail the outer PMT

veto cut, to 56, the number of active tank PMTs used in Phase I, yields the probability

of accidental failure
56

∑
𝑛=8

𝑃(𝑛) = 2.28(3)% (9.25)

where 𝑃(𝑛) is the fraction of events from the red histogram in fig. 9.4 with 𝑛 unique

tank PMTs firing in coincidence. The statistical error given in eq. (9.25) was determined

assuming that the number of accidental failures of the outer PMT veto cut in a given

number of trials is a binomial random variable.

To be as conservative as possible, the small contribution to the failure probability from

poorly-contained neutron captures within the NCV was incorporated via the expression

𝑃tank fail =
8

∑
𝑘=0

𝑃(𝑘) [
56

∑
𝑛=8−𝑘

𝑃(𝑛)] = 2.42 ± 0.03 (stat) ± 0.14 (syst)% (9.26)

where 𝑃(𝑘) is the RAT-PAC estimate from fig. 9.3 of the probability that a neutron cap-

ture within the NCV will lead to 𝑘 unique tank PMTs detecting at least one photoelectron.

Since the RAT-PAC event containment study overestimates the true contribution of un-

contained neutron captures to the outer PMT veto cut failure rate (because, e.g., more

than one photoelectron may be needed to generate reconstructable pulses on the tank

PMTs), the systematic error assigned above was chosen to be equal to the difference

in the values of 𝑃tank fail obtained with (see eq. (9.26)) and without (see eq. (9.25)) the
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small RAT-PAC correction. To account for the accidental failure rate, the number of

observed neutron candidate events should be increased by 𝑃tank fail times the number of

NCV coincidence events that passed all cuts except for the outer PMT veto cut.

9.4.3 Total charge cut

Although the total charge cut was designed to remove only the most obvious muon can-

didate events (those that deposit about 34 MeV or more in the scintillator), it could

conceivably reduce the number of true neutron capture events if there is a very large

unrecognized error in the NCV charge-to-energy calibration described in section 10.2.1,

e.g., the total charge collected on the NCV PMTs deviates substantially from being, on

average, a linear function of the total energy deposited in the liquid scintillator. However,

because the NCV efficiency estimate from section 10.2.3 based on the charge-to-energy

calibration agrees reasonably well with the value obtained using a 252Cf calibration source,

an error of the magnitude needed for even the highest-energy signal events (which deposit

nearly 9 MeV) to fail the total charge cut appears unlikely.

Another possibile means by which the total charge cut could reduce the number of

signal events is if a cosmic muon enters the NCV within 40 ns of the start of a true

neutron capture event. For realistic values of the rate at which cosmic muons enter the

NCV (say, a few tens of Hz), however, this pileup effect is negligible. Unlike the other

two analysis cuts, therefore, no systematic corrections associated with the total charge

cut will be applied to the observed neutron candidate event rate.

9.5 Results

Based on the discussion in the previous section, the accepted value 𝑁𝑛 for the number of

neutron candidate events observed at each NCV position may be written as

𝑁𝑛 = 𝑁pass + 𝑁10 μs + 𝑃tank fail 𝑁tank (9.27)

where, in the region of interest (10 μs to 70 μs after the start of the beam crossing), 𝑁pass

is the number of observed NCV coincidences that pass all cuts, 𝑁10 μs is the number of

events that fail only the afterpulsing cut and occur within the first 10 μs, 𝑁tank is the
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NCV

position

Exposure

(1018 POT) 𝑁pass 𝑁10 μs 𝑁tank 𝑁𝑛

1 7.88 3768 57 1602 3864 ± 61 (stat) ± 57 (syst)

2 17.66 296 43 2549 401 ± 17 (stat) ± 43 (syst)

3 13.24 723 20 2234 797 ± 27 (stat) ± 20 (syst)

4 10.98 825 41 2428 925 ± 29 (stat) ± 41 (syst)

5 6.79 241 13 1276 285 ± 16 (stat) ± 13 (syst)

6 3.63 356 12 664 384 ± 19 (stat) ± 12 (syst)

7 2.20 55 5 348 68 ± 7 (stat) ± 5 (syst)

Table 9.1: Neutron candidate events observed at each NCV position. Starting with the
third column, the quantities 𝑁pass, 𝑁10 μs, 𝑁tank, and 𝑁𝑛 listed in the table represent
event counts observed in the region of interest. They are, respectively, the number of
events that pass all cuts, the number of events that fail only the afterpulsing cut and

occur within the first 10 μs, the number of events that fail only the outer PMT veto cut,
and the accepted number of neutron candidate events.

number of events that fail only the outer PMT veto cut, and 𝑃tank fail is given in eq. (9.26).

The uncertainty on the number of observed neutron candidate events, 𝜎𝑁𝑛
, is computed

using

𝜎2
𝑁𝑛

= 𝑁pass (stat) + 𝑁2
10 μs (syst) + 𝑃 2

tank fail 𝑁tank (stat) + 𝑁2
tank 𝜎2

𝑃tank fail
(9.28)

where 𝜎𝑃tank fail
is the error given in eq. (9.26), and the last term includes both a statistical

and a systematic contribution to the uncertainty.

Table 9.1 lists the measured neutron candidate event counts at each NCV position

together with the corresponding number of protons on target (the exposure) delivered by

the beam. After a determination of the NCV neutron detection efficiency is made in the

following chapter, these two quantities will be used to compute an upper limit on the

expected background neutron event rates for ANNIE Phase II.
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Chapter 10

Efficiency calibration of the Neutron

Capture Volume

In addition to the measured event rates for neutron capture candidates in the NCV, a

determination of the detection efficiency of the NCV is needed before the background

neutron event rates at each position may be calculated. This determination was made

using two independent calibration techniques: exposing the NCV to neutrons from a 252Cf

fission source and using cosmic ray muon data to determine an energy threshold. This

chapter reviews both of these calibration techniques and describes the data analysis that

led to an accepted value of the NCV efficiency for ANNIE Phase I.

10.1 252Cf source calibration method

Californium-252 is an artificially-produced1 radioisotope which decays by alpha emission

(96.908(8)% branching fraction) and spontaneous fission (3.092(8)% branching fraction)

with a total half-life of 2.645(8) years [462]. Spontaneous fissions of 252Cf produce an

average of 3.7675(40) neutrons each [463]. The energy spectrum of these neutrons follows

the Watt distribution 𝑁(𝐸), which may be written in the form

𝑁(𝐸) = 𝑒−𝐸/𝑎 sinh(
√

𝑏𝐸) (10.1)
1Only two institutions worldwide currently produce californium: Oak Ridge National Laboratory in

the United States and the Research Institute of Atomic Reactors in Russia [461].
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where 𝐸 is the neutron kinetic energy in MeV, and, for 252Cf, the parameters 𝑎 and 𝑏 may

be taken to have the values [461] 𝑎 = 1.18 MeV and 𝑏 = 1.034 19 MeV−1. Gamma-rays

are also produced by each fission of 252Cf with an average multiplicity of 7.98(20) [464].

A straightforward method for calibrating a neutron detector is to expose it to a neu-

tron source with a precisely known activity, count the number of detected neutrons, and

compare the result to the expected number of neutron events in the detector. While such

an approach could in principle have been used to calibrate the NCV, a major obstacle

was the lack of precision with which the source activity was known. Because the 252Cf

source selected for the NCV calibration measurements was found on January 28, 1988 to

have a neutron emission rate2 of 2.31 × 107 neutrons/s, one might attempt to determine

its current activity via a naïve application of the radioactive decay law

𝐴(𝑡) = 𝐴0 exp[− ln(2) 𝑡 / 𝑡1/2], (10.2)

where 𝐴(𝑡) is the activity of the source at time 𝑡, 𝐴0 is the initial activity, and 𝑡1/2 is

the half-life of the source. However, because californium sources are manufactured by

irradiating curium oxide targets with neutrons and then chemically separating Cf from

the other transmutation products, the sources are never isotopically pure. In young

sources, 252Cf will completely dominate the neutron emission rate (see fig. 10.1) due to its

comparatively short half-life, but in sources that are several decades old, the contributions

of 250Cf and 248Cm become appreciable, eventually overwhelming the remaining neutron

emissions from 252Cf [461]. Since the initial isotopic composition of the californium source

used for ANNIE Phase I is unknown, only an estimate of its activity may be obtained

using eq. (10.2).

To avoid the need to know the source activity precisely in the NCV efficiency analysis,

a different calibration technique was used. Because a 252Cf fission event involves the near-

simultaneous emission of both neutrons and 𝛾-rays from the daughter nuclei, the detection

of a fission 𝛾-ray may be used to trigger a neutron detector. Neutron captures observed

in the detector shortly after the 𝛾-ray trigger will often be due to neutrons from the same

fission event that produced the 𝛾-ray. If the source activity and the unrelated background
2Unfortunately, no uncertainty is given for this calibration measurement in the original documents.
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Figure 10.1: Calculated neutron emission rate of a californium source with an initial
isotopic composition of 4.32% 249Cf, 10.82% 250Cf, 3.31% 251Cf, 81.50% 252Cf, 0.04%

253Cf, and 0.01% 254Cf. Figure taken from [461].

event rate are both sufficiently small, the distribution of neutron event times relative

to the 𝛾-ray trigger will include a flat component and an excess with a characteristic

shape that is due to the prompt neutrons. The size of this excess may be compared

with simulations to extract the neutron detector efficiency. This technique was used to

calibrate the NCV by (1) acquiring data using a 252Cf source and a suitable triggering

device, and (2) comparing the measured event time distribution to simulations produced

using the FREYA event generator [465] and the RAT-PAC detector simulation package

[460].

10.1.1 Triggering apparatus

During the NCV calibration measurements, an LYSO3 scintillation crystal coupled to a

small photomultiplier tube was used to detect the fission 𝛾-rays. A discriminator con-

nected to the PMT output was used to trigger the full ANNIE detector. The crystal and
3Lutetium-yttrium oxyorthosilicate (Lu1.8Y0.2SiO5(Ce))
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PMT were placed in a light-tight cardboard box which was positioned directly on top

of the ANNIE water tank hatch. The 252Cf source was then placed on top of the box

just above the LYSO crystal. All of the efficiency measurements considered here were

performed with the NCV at position #1 (just below the surface of the water at the center

of the tank).

Background signals in the LYSO crystal are produced not only by cosmic ray muons

(which provide an irreducible background at a relatively low rate) but also by 𝛽− decays

of 178Lu [466], which has a natural abundance of 0.025 99(13)% [160]. To mitigate the

intrinsic 178Lu beta decay background, measurements of the calibration trigger rate were

performed before each run with and without the source present. The discriminator thresh-

old and source placement relative to the LYSO crystal were both adjusted to minimize

the contamination 𝒞, defined as

𝒞 ≡ 𝑅no source
𝑅source

, (10.3)

where 𝑅source is the LYSO crystal trigger rate when the 252Cf source was present and

𝑅no source is the trigger rate when the source was removed. The contamination was mea-

sured again at the end of each calibration run to check its consistency. Because the average

of the pre- and post-run measurements of the contamination never exceeded 0.52%, the

false LYSO trigger rate due to cosmic muons and 178Lu beta decays will be neglected in

the source data analysis.

10.1.2 Timing data

A total of 206 732 LYSO triggers were recorded using the apparatus described in sec-

tion 10.1.1. In response to each trigger, an 80 μs readout window was digitized by the

ANNIE DAQ, including traces from both of the NCV PMTs and all of the water tank

PMTs. The time distribution within this window of all events passing the neutron can-

didate criteria described in chapter 9 is shown in fig. 10.2. Although the distribution

appears to be flat near the end of the 80 μs window, two features are obvious at early

times: a large excess in the third bin and a smaller, broad bump that extends from roughly

4 μs to 30 μs. Because the first two bins in the distribution represent times before the

LYSO trigger was issued, the large value in the third bin may be attributed to prompt
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Figure 10.2: Distribution of neutron candidate event times from the 252Cf source
calibration runs taken with the NCV at position #1. The large event rate in the third

bin may be attributed to prompt fission 𝛾-rays entering the NCV.

fission 𝛾-rays (which will arrive in coincidence with the LYSO trigger) scattering within

the NCV.

Evidence for the origin of the second feature, the broad bump at early times, may be

obtained by fitting an exponential plus a flat background to the right side (the region later

than about 15 μs) of the bump. The result of such a fit, shown in fig. 10.3, yields a value

for the exponential time constant of (12.8 ± 2.8) μs, which is consistent with the nominal

value of 12.2 μs for thermal neutron captures in the NCV liquid. This observation suggests

that the broad bump seen at early times corresponds to 252Cf neutrons thermalizing and

then capturing within the NCV. Stronger evidence for this conclusion was obtained using

Monte Carlo simulations, as described below.
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Figure 10.3: Exponential fit of the time distribution from fig. 10.2 after 15 μs.

10.1.3 Simulations

To measure the NCV efficiency, data from the 252Cf source calibration runs were compared

with simulations produced using version 2.0.3 of the FREYA (Fission Reaction Event

Yield Algorithm) event generator and an ANNIE-specific version of RAT-PAC.

10.1.3.1 FREYA model for 252Cf spontaneous fission

The FREYA event generator, which was introduced by Randrup and Vogt [467] in 2009

and has undergone continuing development [465, 468] and testing against experimental

data [469–474] up to the present, implements realistic models of both spontaneous fission

and neutron-induced fission.4 Version 2.0.3 of FREYA is capable of generating sponta-

neous fission events for 6 nuclides (238U, 238Pu, 240Pu, 242Pu, 244Cm, and 252Cf) and
4Fissions induced by neutrons with incident kinetic energies up to 𝐸𝑛 = 20 MeV may be simulated.
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neutron-induced fission events for 5 nuclides (233U, 235U, 238U, 239Pu, and 241Pu). A

brief summary of the procedures used by FREYA to model spontaneous fission of 252Cf is

given below. For a complete description of the code, the interested reader is encouraged

to consult the publications cited above and the FREYA 2.0.3 user manual [475].

To begin a simulated 252Cf fission event, FREYA samples a mass number 𝐴𝑓 for one of

the fragments using the empirical distribution shown in fig. 10.4. The proton number 𝑍𝑓

of the selected fragment is then sampled on the restricted interval ∣𝑍𝑓 − ̄𝑍𝑓(𝐴𝑓)∣ ≤ 5𝜎𝑍

from the Gaussian distribution

𝑃(𝑍𝑓|𝐴𝑓) ∝ exp(−
[𝑍𝑓 − ̄𝑍𝑓(𝐴𝑓)]2

2𝜎2
𝑍

) (10.4)

recommended by reference [476]. In the expressions above, the mean fragment proton

number ̄𝑍𝑓(𝐴𝑓) is chosen so that, on average, the fragment will have the same charge-to-

mass ratio as the parent nucleus, i.e.,

̄𝑍𝑓(𝐴𝑓) = 𝐴𝑓 (𝑍0
𝐴0

) , (10.5)

where 𝑍0 = 98 is the initial proton number and 𝐴0 = 252 is the initial mass number of

the fissioning 252Cf nucleus. The parameter 𝜎𝑍 has the value 0.47 for 252Cf.

After 𝐴𝑓 and 𝑍𝑓 values have been chosen for the first fragment, conservation of electric

charge (𝑍′
𝑓 = 𝑍0 − 𝑍𝑓) and baryon number (𝐴′

𝑓 = 𝐴0 − 𝐴𝑓) allow an immediate determi-

nation of the proton number 𝑍′
𝑓 and the mass number 𝐴′

𝑓 for the second fragment. Once

both are identified, the two fragments may be referred to as the “light’’ and “heavy’’

fragment, where the heavy fragment has mass number 𝐴𝐻 = max(𝐴𝑓, 𝐴′
𝑓).

The energy released by the fission reaction is given by the Q-value

𝑄 = 𝑚0 − 𝑚𝐻,g.s. − 𝑚𝐿,g.s. (10.6)

where 𝑚0 is the mass of the initial 252Cf nucleus and 𝑚𝐻,g.s. (𝑚𝐿,g.s.) is the ground-

state mass of the heavy (light) fission fragment. The available energy, which is exactly

conserved in the model, is partitioned into kinetic energy (using the appropriate value of

the mean total kinetic energy measured in reference [477]), rotational energy (assuming
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statistical population of the dinuclear modes available during scission), and excitation

energy of the fragments, allowing for thermal fluctuations in the last of these.

Once the released energy has been divided between the fission fragments, both of them

are made to de-excite via repeated single neutron emission. A neutron emission step is

simulated by sampling a kinetic energy 𝐸𝑛 from the black-body spectrum

𝑑𝑁𝑛
𝑑𝐸𝑛

∝ 𝐸𝑛 exp(−𝐸𝑛/𝑇max). (10.7)

The maximum possible temperature 𝑇max of the daughter nucleus is given by

𝑇max = √𝑄𝑛/𝑎𝑑, (10.8)

where 𝑎𝑑 is the level density parameter of the daughter nucleus (see section 4.3) and 𝑄𝑛

is the maximum possible excitation energy of the daughter nucleus (corresponding to the

emission of a neutron at rest). A direction for the emitted neutron is also chosen under the

assumption that the emission process is isotropic in the rest frame of the parent fragment.

Momentum four-vectors are stored for the final-state neutron and daughter nucleus. If

the excitation energy of the daughter nucleus exceeds 𝑆𝑛 + 𝑄min, where 𝑆𝑛 is the neutron

separation energy and 𝑄min = 0.01 MeV, then another neutron emission step is simulated

using the daughter nucleus as the new parent. This process continues for both fragments

for as many steps as are energetically possible.

After insufficient excitation energy remains for neutron evaporation to continue, FREYA

simulates the emission of 𝛾-rays from the fission fragments. For high excitation energies

(near the neutron emission threshold 𝑆𝑛) this is done by sampling 𝛾-ray energies from the

spectrum5

𝑑𝑁𝛾

𝑑𝐸𝛾
∝

Γ2
GDR𝐸2

𝛾

(𝐸2
𝛾 − 𝐸2

GDR)2 − Γ2
GDR𝐸2

𝛾
𝐸2

𝛾 𝑒−𝐸𝛾/𝑇 (10.9)

where the energy 𝐸GDR and width ΓGDR of the giant dipole resonance are taken to be

𝐸GDR = (31.2𝐴−1/3 + 20.6𝐴−1/6) MeV (10.10)

and

ΓGDR = 5 MeV (10.11)
5This is similar to the MARLEY treatment of E1 𝛾-ray emission in the Hauser-Feshbach statistical

model. See section 4.4.5.
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Figure 10.4: Experimental distribution measured by Hambsch and Oberstedt [477] of
the mass number 𝐴 of fission fragments produced by spontaneous fission of 252Cf.

for a fragment with mass number 𝐴. When the remaining excitation energy falls below

one of the discrete nuclear levels given in the RIPL-3 database [321], FREYA uses the

tabulated branching ratios therein to complete the 𝛾-ray cascade to the ground state.

10.1.3.2 Particle tracking with RAT-PAC

To enable FREYA to be used with the existing ANNIE simulation tools, the recommended

interface between FREYA and Geant4 provided in version 2.0.3 of the LLNL6 Fission

Library [478] was incorporated into a fork of RAT-PAC. While models of the ANNIE

tank, water volume, PMTs, and NCV were all included in the simulated detector geometry,

the dark box containing the LYSO crystal and trigger PMT was not simulated. Fission

events were created one at a time in RAT-PAC using neutron and 𝛾-ray tracks with initial

4-momenta taken from a single fission simulated by FREYA. These tracks were started

at a point above the tank hatch corresponding to the location of the 252Cf source used

for the calibration measurements. Neutron reactions were simulated using version 4.5 of
6Lawrence Livermore National Laboratory
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Figure 10.5: Predicted time distribution for neutron capture events in the NCV liquid.
Time 𝑡 = 0 corresponds to a fission event simulated using the FREYA event generator.

G4NDL,7 a collection of continuous-energy neutron cross sections and final-state particle

production data primarily based on the ENDF/B-VII.1 evaluated nuclear data library

[479].

10.1.3.3 Simulation results

Using the approach described above, a sample of 106 simulated 252Cf fission events was

produced using FREYA and RAT-PAC. Within this sample, a total of 66 608 neutron

captures were observed inside of the NCV liquid volume. The time distribution for these

neutron captures during the first 80 μs after fission,8 a time period which includes 84%

of all of the NCV captures, is shown in fig. 10.5. After adding an offset of 2014 ns to the
7Geant4 Neutron Data Library
8All fission neutrons and 𝛾-rays were treated in the simulations as being emitted simultaneously at

time 𝑡 = 0.
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simulated capture times to account for the pre-trigger part of the readout window, the

data shown in fig. 10.2 were fit with a model based on the simulation results. According

to this model, the expected number of counts observed after 𝑁trigs LYSO triggers in the

𝑗th time bin 𝐶𝑗 is given by

𝐶𝑗(𝜖NCV, 𝑅, 𝑃𝛾) = 𝑁trigs (𝜖NCV 𝑃𝑛,𝑗 + 𝛿𝑗,𝛾 bin 𝑃𝛾 + Δ𝑡𝑗 𝑅) (10.12)

where 𝛿𝑗,𝛾 bin is one for the bin containing the gamma flash and zero otherwise, Δ𝑡𝑗 is the

duration of the 𝑗th time bin, and 𝜖NCV, 𝑅, and 𝑃𝛾 are fitting parameters representing,

respectively, the NCV efficiency (the fraction of true neutron captures within the NCV

liquid that are detected), the background event rate,9 and the fraction of fissions that

result in a 𝛾-ray event being detected by the NCV. The probability 𝑃𝑛,𝑗 that a 252Cf

fission leads to a true neutron capture inside the NCV during the 𝑗th time bin was

estimated from the simulation results via the formula

𝑃𝑛,𝑗 =
𝑁𝑗

𝑁simulated
, (10.13)

where 𝑁𝑗 is the number of simulated captures that occurred in the 𝑗th time bin (with the

pre-trigger correction to the simulated times applied as described above), and 𝑁simulated =

106 is the number of simulated fissions.

To obtain the best-fit values for the parameters 𝜖NCV, 𝑅, and 𝑃𝛾, a maximum likelihood

fit was performed using the ROOT [449] implementation of the MINUIT [480] function

minimization and error analysis software package. The negative log-likelihood function

− ln(𝐿) = ∑
𝑗

𝐵𝑗 ln(𝐶𝑗) − 𝐶𝑗 − ln(𝐵𝑗! ) (10.14)

minimized during the fit corresponds to the product of Poisson probabilities

𝐿 ≡ 𝐿(𝜖NCV, 𝑅, 𝑃𝛾) = ∏
𝑗

𝐶𝐵𝑗
𝑗 𝑒−𝐶𝑗

𝐵𝑗!
, (10.15)

where 𝐵𝑗 is the observed number of counts in the 𝑗th bin, the expected number of counts

𝐶𝑗 is given by the model in eq. (10.12), and the product in eq. (10.15) (the sum in
9This rate includes a contribution from “pileup fissions’’ that did not trigger the detector but never-

theless led to a neutron capture or a 𝛾-ray event in the NCV that was recorded.
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Table 10.1: Results of the maximum likelihood fit (described in section 10.1.3.3) to the
252Cf source calibration data. Only statistical errors are given here.

Parameter Variable Best-fit value

NCV efficiency 𝜖NCV 9.60(57) × 10−2

Background event rate (Hz) 𝑅 1.12(4) × 102

𝛾-ray event probability 𝑃𝛾 1.19(8) × 10−3

Reduced chi-squared statistic 𝜒2/𝜈 0.753

eq. (10.14)) includes all 100 time bins10 used to create the data histogram shown in

fig. 10.2. The best-fit parameter estimates, including statistical errors estimated by MI-

NUIT using numerical differentiation at the minimum of − ln(𝐿), are shown in table 10.1.

The best-fit model is plotted together with the source data in fig. 10.6.

To validate the fitting procedure, fictitious 252Cf source datasets were generated by

sampling bin counts from a Poisson distribution for which the expected number of counts

𝐷𝑗 for the 𝑗th bin was given by

𝐷𝑗 = 𝑁trigs (𝜖NCV 𝑃𝑛,𝑗 + 𝛿𝑗,𝛾 bin 𝑃𝛾)

+ 𝑁trigs Δ𝑡𝑗 (𝑅fission [𝜖NCV 𝑃𝑛 + 𝑃𝛾] + 𝑅other) (10.16)

where 𝑃𝑛 is the probability that a 252Cf fission event will lead to a neutron capture at

any time in the NCV liquid, 𝑅fission is the fission rate of the source, 𝑅other is the rate of

background events unrelated to 252Cf fissions, and all other symbols in the equation have

the same meanings as in eq. (10.12). Note that the model presented in eq. (10.16) is the

same as in eq. (10.12) except that the flat background term has now been separated into

contributions from pileup fission11 neutrons, pileup fission 𝛾-rays, and other causes. To

generate each fictitious dataset, a new set of model parameters 𝜖NCV, 𝑅fission, 𝑅other, 𝑃𝛾,
10The fit procedure described here was repeated using a subset of the time bins representing the first

25 μs after an LYSO trigger. Only slight differences in the best-fit parameters were observed.
11That is, fissions other than those that activated the trigger apparatus during the source calibration

measurements
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Figure 10.6: Comparison of the 252Cf calibration source data with the result of a
maximum likelihood fit of the model defined in eq. (10.12).

and 𝑁trigs were sampled from the distributions

𝜖NCV ∼ 𝒰(0.03, 0.25) (10.17)

𝑅fission ∼ 𝒩(3000 Hz, 700 Hz) (10.18)

𝑅other ∼ 𝒰(10 Hz, 150 Hz) (10.19)

𝑃𝛾 ∼ 𝒰(5 × 10−4, 5 × 10−3) (10.20)

𝑁trigs ∼ 𝒰(1 × 105, 3 × 105) (10.21)

where 𝒰(𝑎, 𝑏) is a uniform distribution defined on the interval [𝑎, 𝑏] and 𝒩(𝜇, 𝜎) is a

normal distribution with mean 𝜇 and standard deviation 𝜎. The mean of the normal
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distribution for 𝑅fission was chosen based on the approximate fission rate that the 252Cf

calibration source would have had at the time of data taking if it were truly isotopically

pure.

After each fictitious dataset was generated, a maximum likelihood fit was performed

using MINUIT in the same manner as was done for the real data. If an obvious error

occurred during fitting (as signaled by a nonzero return code from one of the MINUIT

subroutines), the problematic dataset was discarded, and a new one was sampled before

continuing. After each successful fit, the pull 𝑔NCV was computed, which is defined by

𝑔NCV ≡
𝜖NCV,fit − 𝜖NCV,true

𝜎NCV,fit
, (10.22)

where 𝜖NCV,fit is the fitted value of the NCV efficiency, 𝜖NCV,true is the true value (sampled

from the uniform distribution given in eq. (10.17)) of the NCV efficiency, and 𝜎NCV,fit is

the MINUIT estimate of the 1-sigma error on 𝜖NCV,fit. In the absence of bias and assuming

that the estimated error on 𝜖NCV is accurate, the pull 𝑔NCV will follow a standard normal

distribution 𝒩(0, 1).

A histogram showing the empirical pull distribution for 10 000 fictitious datasets is

shown in the top panel of fig. 10.7, together with a Gaussian fit to the results. While the

fitted mean of the distribution is consistent with zero, the fitted standard deviation of

0.164 is well below the expected value of 1, suggesting that the estimated statistical error

returned by MINUIT is overly pessimistic. If one rescales the MINUIT error estimate by a

factor of 0.165 for each of the 10 000 trials, one obtains the corrected pull histogram shown

in the bottom panel of fig. 10.7, which is consistent with a standard normal distribution.

These results suggest that, for a reasonably large range of possible true NCV effi-

ciencies, background event rates, etc. (see eqs. (10.17)–(10.21)), and assuming that the

simulation produced using FREYA and RAT-PAC is an accurate representation of the

underlying physics, the fitting procedure described above will yield an unbiased estimator

of the true NCV efficiency. Although, based on the empirical pull distribution, one could

justify rescaling the MINUIT estimate of the statistical error for the NCV efficiency by the

factor 0.165, we will opt to be more conservative and use the unaltered value. According
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Figure 10.7: TOP: The distribution of the pull 𝑔NCV (see eq. (10.22)) for 10 000 fictitious
252Cf calibration source datasets generated using a toy Monte Carlo simulation. A

Gaussian fit to the simulation results is shown in blue. BOTTOM: The pull distribution
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to table 10.1, then, the fit to the calibration source data yields the value

𝜖NCV = 9.60 ± 0.57 (stat)% (10.23)

for the NCV efficiency. To obtain an estimate of the systematic error, we will compare

the value obtained using the 252Cf source data with another efficiency calibration method

described in the following section.

10.2 Cosmic muon calibration method

Alongside the measurements performed using the 252Cf source apparatus described above,

a second technique, based on data taken using the cosmic muon trigger, was also used to

estimate the NCV neutron detection efficiency. This was done by (1) comparing simula-

tions of muons passing through the NCV with cosmic trigger data to obtain a conversion

factor between the summed charge on the two NCV PMTs and the energy deposited in

the liquid scintillator, (2) estimating the charge threshold for NCV events and converting

it to an energy threshold, and (3) performing simulations to predict the fraction of true

neutron captures that will result in an energy deposition above threshold in the NCV

liquid.

10.2.1 Estimate of the charge-to-energy conversion factor

As was discussed in section 8.4.5, the cosmic ray trigger for ANNIE Phase I allows one to

select muon tracks passing nearly directly downward through the NCV. To estimate the

charge-to-energy conversion factor for the NCV, simulations of muons passing through the

NCV were compared with cosmic trigger data. In the simulations, a cosmic muon event

generator originally written for the G4beamline code [481] was adapted for use with RAT-

PAC. Starting locations for each muon track were sampled from a disk high above the

ANNIE detector. The initial muon momenta were determined using a cos2 𝜃 distribution12

for the polar angle 𝜃 ∈ [0°, 70°) (with 0° being straight downward), a uniform distribution

for the azimuthal angle 𝜙 ∈ [0, 2𝜋), and an empirical distribution for the momentum

magnitude measured using the CAPRICE94 spectrometer as described in reference [482].
12See section 29.3.1 of the “Reviews, Tables, and Plots’’ in reference [78].
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Table 10.2: Results of the fits used to estimate an energy threshold for the NCV

Parameter Variable Best-fit valuea Fit 𝜒2 DOFb p-value

Simulated downward muon
energy deposition peak 𝐸𝜇,peak 91.1(2) MeV 2.3 6 0.89

Downward muon summed
NCV PMT charge peak 𝑄𝜇,peak 400(8) pC 7.7 7 0.36

Threshold summed
NCV PMT charge peak 𝑄thresh 20.9(3) pC 5.1 14 0.98

aParameter errors are statistical only
bDegrees of freedom

Figure 10.8 shows a histogram of the energy deposited in the NCV by simulated muons

that passed through the cosmic trigger paddles in a way that would result in an event

being recorded by the ANNIE DAQ. The histogram of deposited energies revealed a clear

peak around 91 MeV which was used as a reference point when comparing the simulation

results to the cosmic trigger data. To precisely estimate the peak location 𝐸𝜇,peak and

obtain an associated statistical error, a Gaussian fit (shown in red in the figure) was

performed on the simulation results in the vicinity of the peak. The results of the fit are

shown in the first row of table 10.2.

To obtain the charge 𝑄𝜇,peak associated with the corresponding peak in the cosmic

trigger data, a sample of 4841 NCV coincidence events13 recorded at position #2 (center

of the tank) was analyzed. Each of the selected events occurred within 2 μs of a downward

muon candidate being observed by the cosmic ray trigger. Figure 10.9 shows a histogram

of the summed charge observed on the two NCV PMTs for events within that sample.

Using the same procedure as for the RAT-PAC simulations, a Gaussian was fit to the

peak seen in the data, yielding the results shown in the second row of table 10.2.

Assuming that the total charge observed on the NCV PMTs is approximately a linear

function of the energy deposited in the liquid scintillator, the NCV energy threshold
13All cuts were applied to these events except for the outer PMT veto cut (see chapter 9).
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Figure 10.8: Distribution of deposited energies for simulated cosmic muons passing
through the cosmic trigger paddles and through the NCV at position #2 (center of the

tank).

𝐸thresh may be written in the form

𝐸thresh = 𝑄thresh
𝐸𝜇,peak

𝑄𝜇,peak
(10.24)

where 𝑄thresh is the summed charge on the NCV PMTs at threshold, and the ratio

𝐸𝜇,peak/𝑄𝜇,peak is used as a charge-to-energy conversion factor.

10.2.2 Charge and energy thresholds

Because the algorithms used to reconstruct PMT pulses in ANNIE Phase I rely on a

threshold based on pulse amplitude rather than charge, the total charge collected by

the two NCV PMTs for events at threshold will be distributed about some mean value.

Figure 10.10 shows a histogram of the total charge 𝑄sum collected on the two NCV PMTs

for a large sample of NCV coincidence events (from all positions) with 𝑄sum < 100 pC.
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Figure 10.9: Distribution of the total charge collected on the two NCV PMTs at
position #2 (center of the tank) for NCV coincidence events recorded in response to
cosmic muon triggers. Only triggers consistent with a muon traveling nearly directly

downward through the NCV are included in the plot.

Because the presence of afterpulses (which will generally have small charges) would bias

the charge distribution toward an erroneously low mean value, only NCV events that

passed the afterpulsing cut described in chapter 9 are included in the histogram. To

estimate the mean 𝑄thresh of the threshold charge distribution, a Gaussian fit (shown in

red) was performed in the vicinity of the peak seen at about 20 pC in fig. 10.10. The

results of the fit are given in the final row of table 10.2.

Plugging the best-fit parameter values from table 10.2 into eq. (10.24) yields the NCV

energy threshold

𝐸thresh = 4.76 ± 0.12 (stat) MeV. (10.25)

Here the statistical error 𝑠𝐸thresh
was estimated using the relation (valid for independent
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Figure 10.10: Distribution of the total charge collected on the two NCV PMTs for NCV
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100 pC) are shown. The afterpulsing cut has been applied to these data to avoid biasing
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fitted parameters)

𝑠𝐸thresh
= √(𝜕𝐸thresh

𝜕𝑄thresh
)

2

𝑠2
𝑄thresh

+ ( 𝜕𝐸thresh
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)
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. (10.26)

10.2.3 Efficiency determination

To determine the NCV neutron detection efficiency 𝜖NCV that corresponds to the energy

threshold given in eq. (10.25), simulations of thermal neutron captures occurring within

and around the NCV were generated using RAT-PAC. In each of the 5 × 106 simulated
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Figure 10.11: Histogram of the total energy deposited in the scintillator for simulated
neutron captures that occurred within the NCV liquid volume. Two events above

8.6 MeV, attributable to rare neutron captures on 14N, are not shown.

events, a single thermal neutron (with 0.025 eV kinetic energy) track was started with

an initial direction sampled isotropically. The starting location of each thermal neutron

was sampled uniformly from a 1.5 m radius sphere centered on the NCV. A total of

𝑁liquid = 70 470 of the simulated events ended with a neutron capture inside the NCV

liquid volume. A negligibly small number of external neutron captures led to energy

deposits within the NCV liquid, so these were ignored in the efficiency analysis.

Figure 10.11 shows the distribution of the total energy deposited in the liquid scintilla-

tor for each of the 𝑁liquid simulated neutron captures that occurred within the NCV liquid

volume. The sharp drops seen in the histogram near 2.2 MeV and 7.9 MeV correspond

to full absorption of the 𝛾-rays produced by thermal neutron capture on 1H and 157Gd,

respectively, the latter nuclide being the Gd isotope with the largest capture cross section.
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For a given NCV energy threshold 𝐸thresh, the NCV efficiency 𝜖NCV may be obtained from

the RAT-PAC deposited energy spectrum via

𝜖NCV =
∫∞
𝐸thresh

𝒩liquid(𝐸) 𝑑𝐸

∫∞
0

𝒩liquid(𝐸)𝑑𝐸
=

∫∞
𝐸thresh

𝒩liquid(𝐸) 𝑑𝐸

𝑁liquid
(10.27)

where 𝒩liquid(𝐸) is the number of simulated neutron captures in the NCV liquid that

deposited an energy between 𝐸 and 𝐸 + 𝑑𝐸. Using eq. (10.25) and eq. (10.27) with the

simulation results shown in fig. 10.11 yields the result

𝜖NCV = 12.8 ± 0.9 (stat)%. (10.28)

The statistical error shown in eq. (10.28) was found by computing 𝜖NCV according to

eq. (10.27) with the value of 𝐸thresh adjusted by plus or minus its one-sigma error.

10.3 Adopted value of the NCV efficiency

While reasonable efforts have been made to estimate statistical errors for both of the NCV

efficiency measurements discussed in this chapter, the importance of systematic errors be-

comes immediately apparent when one compares eq. (10.23) with eq. (10.28). An accepted

value of the NCV efficiency with an associated systematic error was determined by treat-

ing the values of 𝜖NCV obtained using the 252Cf source data and using the cosmic muon

data as two independent measurements. If one weights each of the two measurements 𝑥𝑖

by the reciprocal of its squared statistical error, i.e., if one associates the weight

𝑤𝑖 = 1
𝜎2

𝑖
(10.29)

with the 𝑖th measurement (where 𝜎𝑖 is the quoted statistical error), then the weighted

sample mean ̄𝑥 is given by

̄𝑥 =
∑𝑖 𝑤𝑖𝑥𝑖

∑𝑖 𝑤𝑖
(10.30)

and has the standard error

𝜎�̄� = √
1

∑𝑖 𝑤𝑖
. (10.31)
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In terms of the weights 𝑤𝑖 and the weighted sample mean ̄𝑥, the sample standard deviation

𝑠 (which we will take as an estimate of the systematic error on ̄𝑥) is given by

𝑠 =
√√√

⎷

∑𝑖 𝑤𝑖(𝑥𝑖 − ̄𝑥)2

(∑𝑖 𝑤𝑖) − (∑𝑖 𝑤2
𝑖

∑𝑖 𝑤𝑖
)

. (10.32)

Applying eqs. (10.29)–(10.32) to the two measurements of the NCV efficiency gives

𝜖NCV = ̄𝑥 ± 𝜎�̄� (stat) ± 𝑠 (syst) = 10.5 ± 0.5 (stat) ± 2.3 (syst)%. (10.33)

In the following chapter, this efficiency value will be used with the results from chapter 9

to compute position-dependent background neutron event rates.

271



Chapter 11

Background neutron event rates

Having determined in previous chapters values of 𝜖NCV, the NCV detection efficiency,

and 𝑁𝑛, the number of observed neutron candidate events at each NCV position, we are

now in a position to convert these quantities into an expected event rate in the NCV. In

eq. (8.8), the neutron event rate (in neutron captures per unit volume per POT) in the

NCV was written in the form

ℛNCV
𝑛 = 𝑁𝑛

𝒫 𝜖NCV 𝑉NCV
, (11.1)

where the exposure 𝒫 is the total number of protons on target and 𝑉NCV is the volume

of the NCV liquid. Assuming that the errors on these quantities are uncorrelated allows

one to analytically compute the estimated uncertainty 𝜎ℛNCV
𝑛

on ℛNCV via the relation

𝜎ℛNCV
𝑛

= √(𝜕ℛNCV
𝑛

𝜕𝑁𝑛
)

2

𝜎2
𝑁𝑛

+ (𝜕ℛNCV
𝑛

𝜕𝜖NCV
)

2

𝜎2
𝜖NCV

+ (𝜕ℛNCV
𝑛

𝜕𝒫
)

2

𝜎2
𝒫 + (𝜕ℛNCV

𝑛
𝜕𝑉NCV

)
2

𝜎2
𝑉NCV

= 𝑅NCV
𝑛 √(

𝜎𝑁𝑛

𝑁𝑛
)

2

+ (
𝜎𝜖NCV

𝜖NCV
)

2

+ (𝜎𝒫
𝒫

)
2

+ (
𝜎𝑉NCV

𝑉NCV
)

2

. (11.2)

The uncertainties on 𝑁𝑛 and 𝜖NCV have been discussed at length in previous chapters.

For the exposure 𝒫, we adopt the 2% systematic uncertainty found during routine cali-

brations of the beam current toroids (see section 8.2.2). For 𝑉NCV, we note that, when

the NCV is full, the volume of liquid scintillator contained therein is given by

𝑉NCV = 𝜋 (𝐷
2

− 𝑊)
2

𝐿 (11.3)
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Table 11.1: Measured rates of neutron candidate events from ANNIE Phase I. A
nominal value of 5 × 1012 POT per spill is assumed in the second column.

NCV position
Neutron candidate event rate ℛNCV

𝑛

(% m−3 spill−1)

1 20.5 ± 1.0 (stat) ± 4.7 (syst)

2 0.95 ± 0.06 (stat) ± 0.23 (syst)

3 2.5 ± 0.1 (stat) ± 0.6 (syst)

4 3.5 ± 0.2 (stat) ± 0.8 (syst)

5 1.8 ± 0.1 (stat) ± 0.4 (syst)

6 4.4 ± 0.3 (stat) ± 1.0 (syst)

7 1.3 ± 0.2 (stat) ± 0.3 (syst)

where 𝐷 is the outer diameter of the acrylic tube, 𝑊 is the tube wall thickness, and 𝐿 is

the length of the tube. Using the numerical values given in section 8.4.2 and estimating

uncorrelated uncertainties of 0.5 in for 𝐷 and 𝐿 and 1/16 in for 𝑊, we find that the

relative systematic uncertainty on the NCV liquid volume 𝑉NCV is given by

𝜎𝑉NCV

𝑉NCV
= 1

𝑉NCV

√(𝜕𝑉NCV
𝜕𝐷

)
2

𝜎2
𝐷 + (𝜕𝑉NCV

𝜕𝑊
)

2

𝜎2
𝑊 + (𝜕𝑉NCV

𝜕𝐿
)

2

𝜎2
𝐿

=
√4(𝐷 − 2𝑊)2 𝐿2 (𝜎2

𝐷 + 4𝜎2
𝑊) + (𝐷 − 2𝑊)4 𝜎2

𝐿
(𝐷 − 2𝑊)2 𝐿

= 5.7%. (11.4)

By combining the accepted value of 𝜖NCV from eq. (10.33) and the neutron candidate

event counts 𝑁𝑛 tabulated in table 9.1, one may use eqs. (11.1) and (11.2) to obtain the

measured rates ℛNCV
𝑛 of neutron candidate events at each NCV position. The results of

this calculation are shown in table 11.1 and fig. 11.1.

A striking feature in fig. 11.1 is the much larger background event rate observed at

position #1 (the top center of the tank) compared to all other NCV positions. Since

the NCV had only 6 cm of water above it at this position, compared with more than

three times this amount at position #6, the next-shallowest position (see table 8.2),

the large event rate suggests that skyshine neutrons, particularly low-energy ones that
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Figure 11.1: Neutron candidate event rates measured during ANNIE Phase I. The inset
diagram shows the NCV positions included in the red and blue datasets. Position #2

(the center of the tank) is shown in purple to indicate that it is included in both the red
and blue data. For the blue dataset, the “water thickness’’ is the depth of the water

above the top of the NCV. For the red dataset, it is the smallest distance between the
side of the tube forming the NCV vessel and the beam side of the tank. Error bars

shown in the plot include both statistical and systematic contributions.



cannot penetrate deeply into the tank, provide a sizeable background in the absence of

appropriate shielding. While difficult to compare quantitatively with previous SciBooNE

results indicating the presence of significant skyshine background at the BNB, the large

excess of events observed by that experiment near the top of the detector briefly after the

beam crossing (see fig. 8.16) is at least qualitatively consistent with our results.

Although the separate horizontal and vertical scans of the tank performed during

Phase I data taking will not fully separate the contributions of dirt and skyshine neu-

trons, the dramatic difference in the rates measured at position #1 (the top center of

the tank) and at position #3 (vertically centered and close to the beam-side wall of the

tank) suggests that skyshine is the more dominant of the two beam-associated neutron

backgrounds.

When considering the practical implications of these results for ANNIE Phase II,

it should be noted that, because no subtraction of the constant-in-time (as opposed to

beam-correlated) background rate was performed for these data, the rates reported in

this chapter include an unknown but potentially significant contribution from cosmic-ray

induced neutrons, which arrived randomly in the NCV with respect to the beam. This

component of the background may be easily characterized using a random off-beam trigger

in Phase II. While a measurement of the constant-in-time component of the background

was attempted during Phase I, insufficient random trigger data were taken for the zero

suppression mode runs. As a result, large statistical errors on the constant-in-time back-

ground rates prevented a meaningful subtraction of the constant-in-time component from

the measured Phase I event rates.

Despite the limitations of the Phase I data, the measured rates nevertheless allow

unambiguous statements about the feasibility of the planned Phase II physics measure-

ments. Examination of table 11.1 and fig. 11.1 demonstrates that, if the entired planned

2.5 m3 fiducial volume is chosen to be at least 60 cm from all of the tank walls, then

no more than about 6% of spills will involve a background neutron capture within the

fiducial volume. If the measurement at position #2 (the center of the tank) is more

reflective of the average background event rate of the chosen fiducial volume, then this
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fraction drops to less than 3%. It should be recognized that these rates are likely to

be overly pessimistic, given the unknown constant-in-time component of the background

and the fact that, as argued in section 8.6, the measured NCV rates represent only an

upper limit on the corresponding neutron capture rates in the Phase II Gd-loaded water.

Because the presence of background neutrons in the fiducial volume and the occurrence of

a charged current neutrino interaction therein may be treated as uncorrelated events, one

may conclude from the Phase I results that only a few percent of signal events in Phase

II will be contaminated by a background neutron.
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Appendix A

Derivation of the compound nucleus

formation cross section

Consider an arbitrary two-body reaction

𝑎 + 𝐴 → 𝑏 + 𝐵 (A.1)

in which a projectile 𝑎 strikes a target 𝐴 to produce an ejectile 𝑏 and a residue 𝐵. Assume

that 𝑎 and 𝐴 are distinguishable (in the sense that they are not identical particles), that

𝑏 and 𝐵 are distinguishable, and that all four particles have nonzero masses. Let the

label 𝛼 refer to the initial channel, i.e., the set of quantum numbers (apart from angular

momenta, which we will consider separately) needed to specify the initial configuration of

the 𝑎 + 𝐴 system, including the masses, charges, etc. of the two particles. Let the label 𝛽

refer to the final channel, which we define in terms of the same set of quantum numbers

as 𝛼. Then it can be shown [262] that the total cross section for the reaction given in

eq. (A.1) is given by1 [309]

𝜎𝛼𝛽 = 𝜋
|𝐩𝛼|2 (2𝑠𝑎 + 1)(2𝑠𝐴 + 1)

∑
𝐽ℓ𝑗ℓ′𝑗′

(2𝐽 +1) ∣𝛿ℓ′ℓ𝛿𝑗′𝑗𝛿𝛼𝛽 − 𝑆𝐽
ℓ′𝑗′𝛽, ℓ𝑗𝛼∣

2
(CM frame, A.2)

1The expression shown here uses the “J basis’’ of reference [309], in which the third angular momentum
quantum number (in addition to the total angular momentum 𝐽 and the orbital angular momentum ℓ)
used to define the entrance channel is the projectile’s total angular momentum 𝐣 ≡ ℓℓℓ +𝑠𝑠𝑠𝑎 (with a similar
definition for the exit channel). In reference [262], Weinberg uses the “S basis,’’ in which the third angular
momentum quantum number defining the entrance channel is instead chosen to be the “channel spin’’
𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑎 + 𝑠𝑠𝑠𝐴.
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where |𝐩𝛼| is the magnitude of the 3-momentum of one of the initial particles in the CM

frame, and 𝑆𝐽
ℓ′𝑗′𝛽, ℓ𝑗𝛼 is the S-matrix element representing the amplitude for the reaction to

occur for a particular configuration of angular momenta. The composite angular momenta

𝑗, 𝑗′, and 𝐽 are given by

𝑗𝑗𝑗 = ℓℓℓ + 𝑠𝑠𝑠𝑎 ⟹ |ℓ − 𝑠𝑎| ≤ 𝑗 ≤ ℓ + 𝑠𝑎 (A.3)

𝑗𝑗𝑗′ = ℓℓℓ′ + 𝑠𝑠𝑠𝑏 ⟹ |ℓ′ − 𝑠𝑏| ≤ 𝑗′ ≤ ℓ′ + 𝑠𝑏 (A.4)

𝐉 = ℓℓℓ + 𝑠𝑠𝑠𝐴 = ℓℓℓ′ + 𝑠𝑠𝑠𝐵 ⟹ |ℓ − 𝑠𝐴| ≤ 𝐽 ≤ ℓ + 𝑠𝐴 (A.5)

where ℓ is the relative orbital angular momentum between 𝑎 and 𝐴, ℓ′ is the same for 𝑏

and 𝐵, and 𝑠𝑎, 𝑠𝐴, 𝑠𝑏, and 𝑠𝐵 are the total spins of 𝑎, 𝐴, 𝑏, and 𝐵, respectively. The sum

over all possible angular momenta in eq. (A.2) may be written explicitly as

∑
𝐽ℓ𝑗ℓ′𝑗′

≡
ℓ+𝑠𝐴

∑
𝐽=|ℓ−𝑠𝐴|

∞

∑
ℓ=0

ℓ+𝑠𝑎

∑
𝑗=|ℓ−𝑠𝑎|

∞

∑
ℓ′=0

ℓ+𝑠𝑏

∑
𝑗′=|ℓ−𝑠𝑏|

. (A.6)

The factors of (2𝑠𝑎 + 1), (2𝑠𝐴 + 1), and (2𝐽 + 1) appear in our expression for 𝜎𝛼𝛽 because

we have assumed that the initial and final spin orientations of the particles are unobserved.

Although eq. (A.2) is often derived in a nonrelativistic context by assuming a particular

form for a scattering potential,2 the result depends only on symmetries (e.g., rotational

invariance) and unitarity of the S-matrix, the latter of which is implied by conservation

of probability. It remains fully valid for relativistic scattering [262].

Equation (A.2) allows us to write the cross section 𝜎el for elastic scattering (in which

the initial and final channels are the same) in the form

𝜎el = 𝜎𝛼𝛼 = 𝜋
|𝐩𝛼|2 (2𝑠𝑎 + 1)(2𝑠𝐴 + 1)

∑
𝐽ℓ𝑗

(2𝐽 + 1) ∣1 − 𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼∣2 . (CM frame, A.7)

Since the S-matrix is unitary, i.e.,

(𝑆𝐽)† 𝑆𝐽 = 𝐼, (A.8)
2See, e.g., reference [284].
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where 𝐼 is the identity matrix, it follows that3

∑
ℓ′𝑗′𝛽

∣𝑆𝐽
ℓ′𝑗′𝛽, ℓ𝑗𝛼∣

2
= 1 (A.9)

and

∑
𝛽≠𝛼

∑
ℓ′𝑗′

∣𝑆𝐽
ℓ′𝑗′𝛽, ℓ𝑗𝛼∣

2
= 1 − ∣𝑆𝐽

ℓ𝑗𝛼, ℓ𝑗𝛼∣2 . (A.10)

The reaction cross section 𝜎𝑅, defined as the cross section for all final channels 𝛽 other

than the entrance channel 𝛼, may therefore be written in the form

𝜎𝑅 = ∑
𝛽≠𝛼

𝜎𝛼𝛽 = 𝜋
|𝐩𝛼|2 (2𝑠𝑎 + 1)(2𝑠𝐴 + 1)

∑
𝐽ℓ𝑗

(2𝐽 + 1) (1 − ∣𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼∣2) .

(CM frame, A.11)

The total cross section 𝜎tot is the sum of the elastic scattering and reaction cross sections:

𝜎tot = 𝜎el + 𝜎𝑅 = 2𝜋
|𝐩𝛼|2 (2𝑠𝑎 + 1)(2𝑠𝐴 + 1)

∑
𝐽ℓ𝑗

(2𝐽 + 1) ℜ (1 − 𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼) .

(CM frame, A.12)

In the regime of high excitation energies where the compound nucleus picture is appro-

priate, the spacing between the nuclear levels is small, and it becomes useful to consider

the average values of these cross sections over an energy window that contains many

states of the intermediate compound nucleus with approximately the same excitation en-

ergy. Let Δ𝐸𝑥 be the excitation energy interval of interest, chosen large enough that it

includes many compound nuclear levels but small enough that slowly varying functions

of energy (including |𝐩𝛼|2) may be approximated as constant within it. Then the energy

average of the S-matrix element 𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼 may be defined by

⟨𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼(𝜀)⟩ ≡ 1

Δ𝐸𝑥
∫

𝜀+Δ𝐸𝑥/2

𝜀−Δ𝐸𝑥/2
𝑆𝐽

ℓ𝑗𝛼, ℓ𝑗𝛼(𝜀′) 𝑑𝜀′, (A.13)

where the S-matrix element is expressed as a function of the total kinetic energy in the

CM frame 𝜀.
3For notational simplicity and later convenience, we have written the sum in eq. (A.9) to include all

possible two-body final channels. If other final channels (e.g., a three-body channel) cannot be neglected,
then the sum should be understood to include these possibilities as well. The same is true for the sum in
eq. (A.10).
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Since

⟨∣1 − 𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼∣2⟩ = ∣1 − ⟨𝑆𝐽

ℓ𝑗𝛼, ℓ𝑗𝛼⟩∣2 + ⟨∣𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼∣2⟩ − ∣⟨𝑆𝐽

ℓ𝑗𝛼, ℓ𝑗𝛼⟩∣2

= ∣1 − ⟨𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼⟩∣2 + Var (𝑆𝐽

ℓ𝑗𝛼, ℓ𝑗𝛼) , (A.14)

where

Var (𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼) ≡ ⟨∣𝑆𝐽

ℓ𝑗𝛼, ℓ𝑗𝛼∣2⟩ − ∣⟨𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼⟩∣2 (A.15)

is the variance of 𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼, it follows that the energy-averaged elastic scattering cross

section ⟨𝜎el⟩ may be decomposed into two contributions:

⟨𝜎el⟩ = ⟨𝜎se⟩ + ⟨𝜎ce⟩ . (A.16)

Here the shape elastic scattering cross section 𝜎se is given by

⟨𝜎se⟩ = 𝜋
|𝐩𝛼|2 (2𝑠𝑎 + 1)(2𝑠𝐴 + 1)

∑
𝐽ℓ𝑗

(2𝐽 + 1) ∣1 − ⟨𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼⟩∣2 , (CM frame, A.17)

and the compound elastic cross section 𝜎ce is given by

⟨𝜎ce⟩ = 𝜋
|𝐩𝛼|2 (2𝑠𝑎 + 1)(2𝑠𝐴 + 1)

∑
𝐽ℓ𝑗

(2𝐽 + 1) Var(𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼). (CM frame, A.18)

This decomposition of the elastic scattering cross section separates it into a smooth,

non-fluctuating piece 𝜎se representing a direct reaction (without the formation of an in-

termediate compound nucleus) and a piece that rapidly fluctuates with energy due to

the presence of many closely-spaced compound nucleus states that may be temporarily

formed before re-emission of the projectile in the entrance channel [337, 483].

If one assumes that direct reaction channels other than shape elastic scattering may

be neglected, then the energy-averaged compound nucleus formation cross section ⟨𝜎𝐶⟩

is given by the sum of the average reaction cross section and the compound elastic cross

section:

⟨𝜎𝐶⟩ = ⟨𝜎𝑅⟩ + ⟨𝜎ce⟩

= 𝜋
|𝐩𝛼|2 (2𝑠𝑎 + 1)(2𝑠𝐴 + 1)

∑
𝐽ℓ𝑗

(2𝐽 + 1) (1 − ∣⟨𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼⟩∣2) . (CM frame, A.19)
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For reactions involving the formation of a compound nucleus with a specific total spin 𝐽

and intrinsic parity Π, one may drop the sum over 𝐽 and write

⟨𝜎𝐶⟩ = 𝜋 (2𝐽 + 1)
|𝐩𝛼|2 (2𝑠𝑎 + 1)(2𝑠𝐴 + 1)

∑
ℓ𝑗

𝛿𝜋 𝑇ℓ𝑗(𝜀) (CM frame, A.20)

where the transmission coefficient 𝑇ℓ𝑗(𝜀) is defined by

𝑇ℓ𝑗(𝜀) ≡ 1 − ∣⟨𝑆𝐽
ℓ𝑗𝛼, ℓ𝑗𝛼⟩∣2 . (A.21)

The factor 𝛿𝜋 is defined as in eq. (4.8) and has been introduced to explicitly enforce parity

conservation.

During the derivation of these results, it has been assumed that interference between

different ℓ𝑗 values and different 𝐽 values may be neglected. This may be justified by

assuming that the elements of the S-matrix have random phases so that the interference

terms will average to zero [337]. For a review of the connection between random matrix

theory and statistical treatments of compound-nucleus reactions, see reference [484].
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Appendix B

Tensor product lemma

Let 𝐱 be an arbitrary 3-vector with magnitude

𝑟 ≡ |𝐱| , (B.1)

and let 𝐪 be a 3-vector directed along the positive 𝑧 axis, i.e., let

𝐪 = 𝜅 ̂𝐳 (B.2)

for some 𝜅 ≥ 0. Since 𝐪 lies along the positive 𝑧 axis, one may write

𝑒𝑖𝐪⋅𝐱 = ∑
𝐽

𝑖𝐽√4𝜋 (2𝐽 + 1) 𝑗𝐽(𝜅 𝑟) 𝑌𝐽0( ̂𝐫) (B.3)

where 𝑗𝐽(𝑥) is the 𝐽th spherical Bessel function of the first kind, 𝑌𝐽0( ̂𝐫) is a spherical

harmonic, and

̂𝐫 ≡ 𝐱
𝑟

(B.4)

is a unit vector in the direction of 𝐱. Although explicit limits for the sums in this appendix

will be omitted for tidiness, every sum shown here should be understood to include all

nonnegative integer values of the index/indices of summation, e.g.,

∑
𝐽

≡
∞

∑
𝐽=0

∑
𝑝𝑛

≡
∞

∑
𝑝=0

∞

∑
𝑛=0

.
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Consider the 𝑀th component 𝑇𝐿𝑀 of an arbitrary spherical tensor operator 𝑇 of rank

𝑅. From eq. (B.3), it follows that

𝑒𝑖𝐪⋅𝐱 𝑇𝑅𝑀 = ∑
𝐽

𝑖𝐽√4𝜋 (2𝐽 + 1) 𝑗𝐽(𝜅 𝑟) 𝑌𝐽0( ̂𝐫) 𝑇𝑅𝑀

= ∑
𝐽

𝑖𝐽√4𝜋(2𝐽 + 1) 𝑗𝐽(𝜅𝑟) ∑
𝑝𝑛

𝛿𝑝 0 𝛿𝑀 𝑛 𝑌𝐽𝑝( ̂𝐫) 𝑇𝑅𝑛 (B.5)

where the Kronecker delta function is defined as in eq. (3.107). Since angular momentum

eigenstates are orthonormal to each other, it follows that the inner product of the state

vectors |𝐽 0 𝑅 𝑀) and |𝐽 𝑝 𝑅 𝑛) is given by

(𝐽 0 𝑅 𝑀 | 𝐽 𝑝 𝑅 𝑛) = 𝛿𝑝 0 𝛿𝑀 𝑛. (B.6)

Substituting this result into eq. (B.5) yields the expression

𝑒𝑖𝐪⋅𝐱 𝑇𝑅𝑀 = ∑
𝐽

𝑖𝐽√4𝜋(2𝐽 + 1) 𝑗𝐽(𝜅𝑟) ∑
𝑝𝑛

(𝐽 0 𝑅 𝑀 | 𝐽 𝑝 𝑅 𝑛) 𝑌𝐽𝑝( ̂𝐫) 𝑇𝑅𝑛 (B.7)

= ∑
𝐽

𝑖𝐽√4𝜋(2𝐽 + 1) 𝑗𝐽(𝜅𝑟) Σ𝑝𝑛 (B.8)

where Σ𝑝𝑛 has been defined as

Σ𝑝𝑛 ≡ ∑
𝑝𝑛

(𝐽 0 𝑅 𝑀 | 𝐽 𝑝 𝑅 𝑛) 𝑌𝐽𝑝( ̂𝐫) 𝑇𝑅𝑛. (B.9)

Recall that the identity operator may be written as a sum over a complete set of states,

i.e.,

∑
𝐿𝑘

|𝐿 𝑘) (𝐿 𝑘| = 1. (B.10)

One may therefore insert a complete set of states into the sum over 𝑝 and 𝑛 to obtain

Σ𝑝𝑛 = ∑
𝑝𝑛

(𝐽 0 𝑅 𝑀 | [∑
𝐿𝑘

|𝐿 𝑘) (𝐿 𝑘|] |𝐽 𝑝 𝐿 𝑛) 𝑌𝐽𝑝( ̂𝐫) 𝑇𝑅𝑛

= ∑
𝐿𝑘

(𝐽 0 𝑅 𝑀 | 𝐿 𝑘) ∑
𝑝𝑛

(𝐿 𝑘 | 𝐽 𝑝 𝐿 𝑛) 𝑌𝐽𝑝( ̂𝐫) 𝑇𝑅𝑛. (B.11)

Since the Clebsch-Gordan coefficients may always be chosen to be real, [485] it follows

that

(𝐿 𝑘 | 𝐽 𝑝 𝐿 𝑛) = (𝐽 𝑝 𝐿 𝑛 | 𝐿 𝑘)∗ = (𝐽 𝑝 𝐿 𝑛 | 𝐿 𝑘) , (B.12)
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and therefore

Σ𝑝𝑛 = ∑
𝐿𝑘

(𝐽 0 𝑅 𝑀 | 𝐿 𝑘) ∑
𝑝𝑛

(𝐽 𝑝 𝐿 𝑛 | 𝐿 𝑘) 𝑌𝐽𝑝( ̂𝐫) 𝑇𝑅𝑛. (B.13)

Since the outer Clebsch-Gordan coefficient (𝐽 0 𝑅 𝑀 | 𝐿 𝑘) vanishes unless 𝑘 = 𝑀, the sum

over 𝑘 may be removed:

Σ𝑝𝑛 = ∑
𝐿

(𝐽 0 𝑅 𝑀 | 𝐿 𝑀) ∑
𝑝𝑛

(𝐽 𝑝 𝐿 𝑛 | 𝐿 𝑀) 𝑌𝐽𝑝( ̂𝐫) 𝑇𝑅𝑛. (B.14)

The tensor product [𝐓𝐿1
⊗ 𝐓𝐿2

]
𝐿𝑀

of two spherical tensors 𝐓𝐿1
(of rank 𝐿1) and

𝐓𝐿2
(of rank 𝐿2) is defined by [260]

[𝐓𝐿1
⊗ 𝐓𝐿2

]
𝐿𝑀

≡ ∑
𝑀1𝑀2

(𝐿1 𝑀1 𝐿2 𝑀2 | 𝐿 𝑀) 𝑇𝐿1 𝑀1
𝑇𝐿2 𝑀2

. (B.15)

Since the spherical harmonic 𝑌𝐽𝑝( ̂𝐫) is the 𝑝th component of a spherical tensor of rank 𝐽,

eq. (B.15) implies that

∑
𝑝𝑛

(𝐽 𝑝 𝐿 𝑛 | 𝐿 𝑀) 𝑌𝐽𝑝( ̂𝐫) 𝑇𝐿𝑛 = [𝑌𝐽 ⊗ 𝐓𝑅]
𝐿𝑀

, (B.16)

and therefore

Σ𝑝𝑛 = ∑
𝐿

(𝐽 0 𝑅 𝑀 | 𝐿 𝑀) [𝑌𝐽 ⊗ 𝐓𝑅]
𝐿𝑀

. (B.17)

Combining the results from eqs. (B.8) and (B.17) allows one to write

𝑒𝑖𝐪⋅𝐱 𝑇𝑅𝑀 = ∑
𝐽

∑
𝐿

𝑖𝐽√4𝜋(2𝐽 + 1) 𝑗𝐽(𝜅𝑟) (𝐽 0 𝑅 𝑀 | 𝐿 𝑀) [𝑌𝐽 ⊗ 𝐓𝑅]
𝐿𝑀

. (B.18)

Since 𝐽 and 𝐿 are dummy summation indices, it is permissible to relabel them. Choosing

the substitutions 𝐽 → 𝐿 and 𝐿 → 𝐽, and swapping the order in which the two sums are

carried out leads to the expression

𝑒𝑖𝐪⋅𝐱 𝑇𝑅𝑀 = ∑
𝐽

𝑖𝐽√4𝜋 (2𝐽 + 1) 𝑗𝐽(𝜅𝑟) 𝑌𝐽0( ̂𝐫) 𝑇𝑅𝑀

= ∑
𝐽

∑
𝐿

𝑖𝐿√4𝜋(2𝐿 + 1) (𝐿 0 𝑅 𝑀 | 𝐽 𝑀) 𝑗𝐿(𝜅𝑟) [𝑌𝐿 ⊗ 𝐓𝑅]
𝐽𝑀

. (B.19)

285



Appendix C

Allowed beta decay

Although this thesis focuses on neutrino-nucleus interactions, the formalism presented in

chapter 3 is sufficiently general that it may be used in calculations of other semileptonic

nuclear processes. Because of the relevance of 40Ti 𝛽+ decay to a determination of the

allowed approximation matrix elements for charged current 𝜈𝑒 scattering on 40Ar (see

chapter 5), a brief derivation of the total decay rate for 𝛽 decay is presented in this

appendix.

In the notation of chapter 3, the Lorentz-invariant amplitude ℳ for 𝛽− decay is given

by the diagram

𝑖ℳ =

𝑒− 𝐴
𝑍+1Y

𝐴
𝑍X

̄𝜈𝑒

(C.1)

while that for 𝛽+ decay is given by

𝑖ℳ =

𝑒+ 𝐴
𝑍−1Y

𝐴
𝑍X

𝜈𝑒

. (C.2)
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Let 𝑝𝑒 and 𝑝𝜈 denote the 4-momenta of the final-state (anti)electron and (anti)neutrino,

respectively. Then conservation of 4-momentum ensures that

𝑝𝑖 = 𝑝𝑓 + 𝑝𝑒 + 𝑝𝜈 (C.3)

where 𝑝𝑖 (𝑝𝑓) is the initial (final) nucleus 4-momentum. The 4-momentum transfer 𝑞 for

𝛽± decay is defined by

𝑞 ≡ 𝑝𝑓 − 𝑝𝑖 = − (𝑝𝑒 + 𝑝𝜈) . (C.4)

For 𝛽− decay, the leptonic part of ℳ is given by the matrix element

ℓ𝜇 = �̄�(𝑝𝑒) 𝛾𝜇 (1 − 𝛾5) 𝑣(𝑝𝜈) (C.5)

while for 𝛽+ decay we have

ℓ𝜇 = �̄�(𝑝𝑣) 𝛾𝜇 (1 − 𝛾5) 𝑣(𝑝𝑒). (C.6)

With these changes, the calculation of ∣ℳ∣2 proceeds in a similar manner to the

charged current neutrino (antineutrino) case for 𝛽− (𝛽+) decay, except that the substitu-

tion 𝜈ℓ → ̄𝜈ℓ ( ̄𝜈ℓ → 𝜈ℓ) should be made for all particle indices in the equations describing

the lepton tensor L𝜇𝜈, and the opposite sign should appear in front of each of the lepton

number factors 𝐿𝜈ℓ
that appear in eqs. (3.155) and (3.156). Under the allowed approxi-

mation, the spin-summed squared amplitude ∣ℳ∣2 for 𝛽± decay is given by an expression

similar to eq. (3.211). After multiplying by the Coulomb correction factor defined in

eq. (3.218) for 𝛽− decay or eq. (3.229) for 𝛽+ decay, one may write

∣ℳ∣2 ≈ 16 𝐺𝐹
2 |𝑉𝑢𝑑|2 𝐸𝜈 𝐸𝑖 𝐸𝑒 𝐸𝑓 𝐹𝐶

× (𝐵(F) [1 + 𝛽𝛽𝛽𝑒 ⋅ 𝛽𝛽𝛽𝜈] + 𝐵(GT) [1 − 1
3

𝛽𝛽𝛽𝑒 ⋅ 𝛽𝛽𝛽𝜈]) (C.7)

where the Fermi (𝐵(F)) and Gamow-Teller (𝐵(GT)) reduced matrix elements (see eqs.

(3.213)–(3.214)) contain the isospin ladder operator 𝑡± for 𝛽± decay.

The definitions in eqs. (3.39) and (3.42) imply that the differential transition rate

(probability per unit time) for 𝛽± decay to a particular nuclear final state 𝑓 may be
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written as

𝑑Γ𝑓 =
∣ℳ∣2 𝛿(4)(𝑝𝑖 − 𝑝𝑓 − 𝑝𝑒 − 𝑝𝜈)

16 (2𝜋)5 𝐸𝑖 𝐸𝑓 𝐸𝑒 𝐸𝜈
𝑑3𝐩𝑓 𝑑3𝐩𝑒 𝑑3𝐩𝜈. (C.8)

Integrating over 𝑑3𝐩𝑓 is trivial because of the delta function. Doing so gives

𝑑Γ𝑓 =
∣ℳ∣2 𝛿(𝐸𝑖 − 𝐸𝑓 − 𝐸𝑒 − 𝐸𝜈)

16 (2𝜋)5 𝐸𝑖 𝐸𝑓 𝐸𝑒 𝐸𝜈
𝑑3𝐩𝑒 𝑑3𝐩𝜈. (C.9)

Plugging in the allowed approximation expression for ∣ℳ∣2 from eq. (C.7) yields

𝑑Γ𝑓 = 𝐺𝐹
2 |𝑉𝑢𝑑|2

(2𝜋)5 𝐹𝐶 𝛿(𝐸𝑖 − 𝐸𝑓 − 𝐸𝑒 − 𝐸𝜈)

× (𝐵𝑓(𝐹) [1 + 𝛽𝛽𝛽𝑒 ⋅ 𝛽𝛽𝛽𝜈] + 𝐵𝑓(𝐺𝑇 ) [1 − 1
3

𝛽𝛽𝛽𝑒 ⋅ 𝛽𝛽𝛽𝜈]) 𝑑3𝐩𝑒 𝑑3𝐩𝜈, (C.10)

where 𝐵𝑓(𝐹) and 𝐵𝑓(𝐺𝑇 ) are the Fermi and Gamow-Teller reduced matrix elements

connecting the initial nuclear state 𝑖 with the final nuclear state 𝑓. Note that

𝑑3𝐩𝑒 𝑑3𝐩𝜈 = |𝐩𝑒|2 |𝐩𝜈|2 𝑑 |𝐩𝑒| 𝑑 |𝐩𝜈| 𝑑Ω𝑒 𝑑Ω𝜈 (C.11)

= 𝐸2
𝜈 |𝐩𝑒|2 𝑑 |𝐩𝑒| 𝑑𝐸𝜈 𝑑 cos 𝜃𝜈𝑒 𝑑𝜙𝑒 𝑑Ω𝜈 (C.12)

where 𝜃𝜈𝑒 is the angle between the (anti)neutrino and the (anti)electron. Plugging this

result into eq. (C.10) and integrating over 𝑑𝜙𝑒 and 𝑑Ω𝜈 (which respectively produce factors

of 2𝜋 and 4𝜋 upon integration) gives

𝑑Γ𝑓 = 2 𝐺𝐹
2 |𝑉𝑢𝑑|2

(2𝜋)3 𝐹𝐶 𝐸2
𝜈 |𝐩𝑒|2 𝛿(𝐸𝑖 − 𝐸𝑓 − 𝐸𝑒 − 𝐸𝜈)

× (𝐵𝑓(𝐹) [1 + 𝛽𝑒 cos 𝜃𝜈𝑒] + 𝐵𝑓(𝐺𝑇 ) [1 − 1
3

𝛽𝑒 cos 𝜃𝜈𝑒]) 𝑑 |𝐩𝑒| 𝑑𝐸𝜈 𝑑 cos 𝜃𝜈𝑒

(C.13)

In the rest frame of the initial nucleus (which, in this case, is both the CM frame and

the laboratory frame), 𝐸𝑖 = 𝑚𝑖. If one neglects the small recoil kinetic energy of the final

nucleus, then 𝐸𝑓 ≈ 𝑚𝑓, and one may write

𝛿(𝐸𝑖 − 𝐸𝑓 − 𝐸𝑒 − 𝐸𝜈) = 𝛿(𝑄𝑓 − 𝐸𝑒 − 𝐸𝜈) (C.14)
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where the reaction Q-value 𝑄𝑓 is defined by

𝑄𝑓 ≡ 𝑚𝑖 − 𝑚𝑓. (C.15)

Since the nuclear recoil has been neglected, 𝐩𝜈 ≈ −𝐩𝑒, and 𝐸𝜈 and 𝐸𝑒 may be treated

as independent of cos 𝜃𝜈𝑒. Integrating over cos 𝜃𝜈𝑒 using this approximation results in the

expression

𝑑Γ𝑓 = 𝐺𝐹
2 |𝑉𝑢𝑑|2

2𝜋3 𝐹𝐶 𝐸2
𝜈 |𝐩𝑒|2 𝛿(𝑄𝑓 − 𝐸𝑒 − 𝐸𝜈) [𝐵𝑓(𝐹) + 𝐵𝑓(𝐺𝑇 )] 𝑑 |𝐩𝑒| 𝑑𝐸𝜈. (C.16)

Integrating over 𝑑𝐸𝜈, which is trivial thanks to the energy-conserving delta function, gives

𝑑Γ𝑓 = 𝐺𝐹
2 |𝑉𝑢𝑑|2

2𝜋3 𝐹𝐶 |𝐩𝑒|2 (𝑄𝑓 − 𝐸𝑒)2 [𝐵𝑓(𝐹) + 𝐵𝑓(𝐺𝑇 )] 𝑑 |𝐩𝑒| . (C.17)

Since |𝐩𝑒| = √𝐸2
𝑒 − 𝑚2

𝑒 and 𝑑 |𝐩𝑒| = |𝐩𝑒|−1 𝐸𝑒 𝑑𝐸𝑒, this may be rewritten as

𝑑Γ𝑓 = 𝐺𝐹
2 |𝑉𝑢𝑑|2

2𝜋3 𝐹𝐶 𝐸𝑒√𝐸2
𝑒 − 𝑚2

𝑒 (𝑄𝑓 − 𝐸𝑒)2 [𝐵𝑓(𝐹) + 𝐵𝑓(𝐺𝑇 )] 𝑑𝐸𝑒. (C.18)

The decay rate to the final state 𝑓 may be obtained by integrating over the kinematically

allowed region 𝐸𝑒 ∈ [𝑚𝑒, 𝑄𝑓], which yields the expression

Γ𝑓 = 𝐺𝐹
2 |𝑉𝑢𝑑|2

2𝜋3 [𝐵𝑓(𝐹) + 𝐵𝑓(𝐺𝑇 )] ∫
𝑄𝑓

𝑚𝑒

𝐹𝐶 𝐸𝑒√𝐸2
𝑒 − 𝑚2

𝑒 (𝑄𝑓 − 𝐸𝑒)2 𝑑𝐸𝑒. (C.19)

In the beta decay literature, one often encounters the dimensionless phase space inte-

gral F(𝑄𝑓), which is defined by

F(𝑄𝑓) ≡ 1
𝑚5

𝑒
∫

𝑄𝑓

𝑚𝑒

𝐹𝐶 𝐸𝑒√𝐸2
𝑒 − 𝑚2

𝑒 (𝑄𝑓 − 𝐸𝑒)2 𝑑𝐸𝑒. (C.20)

The decay rate Γ𝑓 to the final nuclear level 𝑓 may be expressed in terms of F(𝑄𝑓) as

Γ𝑓 = 𝐺𝐹
2 |𝑉𝑢𝑑|2 𝑚5

𝑒
2𝜋3 F(𝑄𝑓) [𝐵𝑓(𝐹) + 𝐵𝑓(𝐺𝑇 )]. (C.21)

The total decay rate Γ is the sum over the decay rates to individual nuclear final states:

Γ = ∑
𝑓

Γ𝑓. (C.22)
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The half-life 𝑡1/2 is related to the total decay rate Γ via

𝑡1/2 = ln(2)
Γ

. (C.23)

The branching ratio R𝑓 to the final nuclear level 𝑓 is given by

R𝑓 =
Γ𝑓

Γ
. (C.24)

Using the definitions above, one may write

R𝑓

F(𝑄𝑓) 𝑡1/2
= 𝐺𝐹

2 |𝑉𝑢𝑑|2 𝑚5
𝑒

2𝜋3 ln(2)
[𝐵𝑓(𝐹) + 𝐵𝑓(𝐺𝑇 )] . (C.25)

Switching to conventional units, it follows from this that, if one defines the constant1

𝐾 ≡ 2𝜋3 ln(2) ℏ
𝐺𝐹

2 |𝑉𝑢𝑑|2 𝑚5
𝑒 𝑐10

≈ 6127 ± 9 s, (C.26)

then one may extract the allowed matrix elements 𝐵𝑓(𝐹) and 𝐵𝑓(𝐺𝑇 ) from an experi-

mental measurement of 𝑡1/2 and R𝑓 via the relation

𝐵𝑓(𝐹) + 𝐵𝑓(𝐺𝑇 ) =
𝐾R𝑓

F(𝑄𝑓) 𝑡1/2
. (C.27)

1The approximate value given in eq. (C.26) is from reference [486].
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